MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 28

Find the volume generated by the area bounded by y=x2-2x and y=0 when it is rotated about the x-axis. 2 x y 2 x y Slice: R Volume of a slice:πR2dx Add slices fromx=0to x=2. x=0x=2 πR2dx = x=0x=2 π(-y)2dx = x=0x=2 πy2dx = x=0x=2 π(x2-2x)2 dx = x=0x=2 π(x4-4x3+4x2) dx = π(x55-4x44+4x33) |x=0x=2 = π(255-24+4323)- π(0-0+0) = 23π(225-2+43) = 8π(45-2+43) = 8π(-65+43) = 8π(-1815+2015) = 8π·215 = 16π15.

The base of a solid is x2+y2=a2. Each plane section, perpendicular to the x-axis, is a square, with one edge of the square in the base of the solid. Find the volume. x y a a -a -a x2+y2=a2 Slice: S dx x=-ax=a S2dx = x=-ax=a (2y)2dx = x=-ax=a 4y2dx = x=-ax=a 4(a2-x2)dx = 4(a2x-x33) |x=-ax=a = 4(a2·a-a33) -4(a2(-a)-(-a)33) = 4(a3-13a3)- 4(-a3+13a3) = 4·23a3-4 (-23a3) = 4·43a3 = 16a33.

Find the volume generated when the area bounded by y=x, y=2 and x=0 is rotated about the line y=2. 1 4 x y y=2 y=x Slice: R Volume of a slice:πR2dx Add slices fromx=0to x=4. Add slices from x=0 to x=4. x=0x=4 πR2dx = x=0x=4 π(2-y)2dx = x=0x=4 π(2-x)2 dx = x=0x=4π (4-4x+x)dx = π(4x-2·43x32+x22) |x=0x=4 = π(4·4-23·4·432+422) -π(0-0+0) = π(16-83·8+162) = 8π(2-83+1) = 8π·13 = 8π3.

Find the volume generated when the area bounded by y=sinx, 0xπ, and y=0 is rotated about the y-axis. π 2 π x 1 y y=sinx Slice: } dy Ri R0 Volume of slice: (πR02-πRi2)dy Add slices fromy=0to y=1. y=0y=1 (πR02-πRi2) dy = y=0y=1π (xright2-xleft2)dy = y=0y=1π ((π-xleft)2-xleft2)dy = y=0y=1π (π2-2πx+x2-x2)dy = y=0y=1π (π2-2πx) dydxdx = x=0x=π2 π(π2-2πx) cosxdx = x=0x=π2 (π3cosx-2π2xcosx)dx = π3sinx-2π2 (xsinx+cosx) |x=0x=π2 = π3sinπ2- 2π2(π2sinπ2+cosπ2)- (π3sin0-2π2(0+cos0)) = π3-2π2·π2 +2π2 = 2π2.

Find the volume of a bagel produced by rotating the circle x2+y2=a2 about the line y=b. - a a x a y y=b x2+y2=a2 Slice: } H R dx Volume of slice:2πRHdx Add slices fromx=ato x=a. x=-ax=a 2πRHdx = x=-ax=a 2π(b-x)2ydx = x=-ax=a 2π(b-x)2 a2-x2dx = x=-ax=a ( 4πba2-x2- 4πxa2-x2 ) dx = x=-ax=a 4πba2-x2dx- 4π-2 x=-ax=a- 2xa2-x2dx = 4πb(area of a semicircle of radiusa) +2π((a2-x2)32) |x=-ax=a = 4πbπa22+2π (032)-2π (032) = 4π2a2b2 = 2π2a2b.

Notes and References

These are a typed copy of Lecture 28 from a series of handwritten lecture notes for the class MATH 221 given on November 13, 2000.

page history