MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 29

Find the volume generated when the area bounded by y=sinx, 0xπ, and y=0 is rotated about the x-axis. π 2 π x 1 y y=sinx Slice: R dx Volume of a slice:πR2dx Add slices fromx=0to x=π. x=0x=π πR2dx = x=0x=π πy2dx = x=0x=π πsin2xdx = x=0x=π π2(sin2x+sin2x)dx = x=0x=ππ2 (sin2x+1-cos2x)dx = x=0x=ππ2 (1-(cos2x-sin2x))dx = x=0x=ππ2 (1-cos2x)dx = π2(x-sin2x2) |x=0x=π = π2(π-sin2π2) -π2(0-sin02) = π2(π-0) = π22.

Find the volume generated by rotating the area bounded by the curves y=3x-x2 and y=x about the x-axis. 3 x 2 y y=x y=3x-x2 Slice Ri R0 x=0x=2 (πR02-πRi2)dx = x=0x=2 (πytop2-πybottom2)dx = x=0x=2 (π(3x-x2)2-πx2)dx = x=0x=2π (9x2-6x3+x4-x2)dx = x=0x=2π (8x2-6x3+x4)dx = π(8x33-6x44+x55) |x=0x=2 = π(8·83-6·244+255)- π(0-0+0) = π25(2334+15) = 32π(4060-4560+1260) = 32π·760 = 8·7π15 = 56π15.

A barrel of height h and maximum radius R is constructed by rotation of the parabola y=R-cx2, -h2xh2. - h 2 h 2 x R - R y y=R-cx2 Volume of a slice y dx isπy2dx Add up slices fromx=-h2toh2 x=-h2x=h2 πy2dx = x=-h2x=h2 π(R-cx2)2dx = x=-h2x=h2 π(R2-2cRx2+c2x4)dx = π(R2x-2cRx33+c2x55) |x=-h2x=h2 = π(R2h2-2cR3h38+c25h525)- π(R2(-h)2+2cR3h323+(-c2h5)5·25) = π(R2h-2cRh33·8+2c2h55·25) = π(R2h-cRh36+c2h55·16).

You are given two spherical balls of wood, one of radius r and a second one of radius R. A circular hole is bored through each ball and the resulting napkin rings have height h. Which napkin ring contains more wood? h -r r x -r r y x2+y2=r2 Volume of a slice } H x dx is2πxHdx. Add slices fromx=r2-(12h)2 tox=r. x=r2-h24x=r 2πx2ydx = x=r2-h24x=r 4πxr2-x2dx = x=r2-h24x=r (-2π)(-2x) (r2-x2)12dx = -2π (r2-x2)32 23 |x=r2-h24x=r = -2π(r2-r2)32 23-(-2π) (r2-(r2-h24))32 23 = 0+2π(h24)32 23 = 2π(h2)323 = 4π3h38 = πh38. This doesn't depend on r!! So both napkin rings contain the same amount of wood.

Find the volume of a tetrahedron where each side of the tetrahedron is an equilateral triangle with side length a. a a a a Volume of a slice s s s } dy is dy (base)(height)2 =(12s)(32s)2 dy Add up slices fromy=0to y=height of tetrahedron=H. H a d a a a d 12ad cos30= 32 So d=12a32= a3. So H=a2-(a3)2= a2-a23= 2a23=a 23. So we want 2y=0y=H (12s)(32s)2 dy=y=0y=H 2·3s28dy. { { } s y a3 s3 a23-y=H-y But H-y=23s. So y=H-23s. So dyds=-23. y=0y=H 2·38s2dy = y=0y=H 2·38s2 dydsds = y=0y=H 2·38s2 (-23)ds = 2·38 s33 (-23) |y=0y=H = -2823 s3|s=as=0 = (-2·28·303)- (-2·28·3a3) = 2·224a3 = 212a3. Since H=a23 we can also write this as 212a3= (23a) 312a2=H 3a212= 3a2H12.

Find the volume generated by rotating the area bounded by y=3x-x2 and y=x about the y-axis x y Volume of a slice } H dx R is2πRHdx. Add slices fromx=0to x=2. x=0x=2 2πRHdx = x=0x=2 2πx(yupper-ylower)dx = &Intersect;x=0x=2 2πx(3x-x2-x) dx = x=0x=22πx (2x-x2)dx = x=0x=22π (2x2-x3)dx = 2π(2x33-x44) |x=0x=2 = 2π(23·8-164)- 2π(0-0) = 2π(163-164) = 2π·16(13-14) = 32π12 = 16π6 = 8π3.

Find the volume generated by revolving the triangle with vertices (1,1), (1,2) and (2,2) about the y-axis. x y y=x Volume of a slice } H R dx is2πRHdx. Add slices fromx=1to x=2. x=1x=2 2πRHdx = x=1x=22πx (2-x)dx = 122π(2x-x2) dx = 2π(x2-x33) |x=1x=2 = 2π(4-83)-2π (1-13) = 2π(43)-2π(23) = 4π3.

Find the volume of a slice obtained by chopping off the end of a sphere of radius r, if the slice has thickness h (at its thickest point). r r x r r h y x2+y2=r2 Volume of a slice } dy R isπR2dy. Add slices fromy=htoy=r. y=hy=r πR2dy = y=hy=r πx2dy = y=hy=r π(r2-y2) dy = π(r2y-y33) |y=hy=r = π(r3-r33)- π(r2h-h33) = π23r3-πr2h +πh33 = π3(2r3-3r2h+h3).

Notes and References

These are a typed copy of Lecture 29 from a series of handwritten lecture notes for the class MATH 221 given on November 15, 2000.

page history