MATH 221 
Arun Ram  
Department of Mathematics and Statistics  
University of Melbourne  
Parkville, VIC 3010 Australia  
aram@unimelb.edu.au
 
Last updated: 28 July 2014
Lecture 3 
A function takes in a number, chews on it and spits out another number
input number   x ⟶ 
 
f  
 
 
 
 
 
 
 
⟶ output number   f ( x ) . 
 
 
A constant function  always spits out the same number, no matter what the input is.
f ( x ) = 2 .  
x ⟶ 
 
f  
 
 
 
 
 
 
 
⟶ 2 
 
 
If x = 3 π + 7   then f ( x ) = 2 .  
 
If x = 3 + 3 i   then f ( x ) = 2 .  
 
If x = 1   then f ( x ) = 2 .  
 
If x = 7   then f ( x ) = 2 .  
 
We call this function  2 .  
5 ⟶ 
 
2  
 
 
 
 
 
 
 
⟶ 2 
 
10 ⟶ 
 
2  
 
 
 
 
 
 
 
⟶ 2 
 
 
So 2   sometimes means the number 2   and sometimes means the function 2 .  
Derivatives 
A derivative takes in a function, chews on it and spits out another function
f ⟶ 
 
d d x  
 
 
 
 
 
 
 
⟶ d f d x . 
 
 
The derivative d d x   spits out a function according to the rules:
(1) 
d x d x = 1 .  
 
 
(2) 
d ( c f ) d x = c d f d x ,   
if c   does not change when x   changes.
 
 
(3) 
d ( f + g ) d x = d f d x + d g d x .  
 
 
(4) 
d ( f g ) d x = f d g d x + d f d x g .  
 
 
Find d y d x   if y = 5 x .  
d y d x = 
d ( 5 x ) d x = 
5 d x d x = 5 · 1 
= 5 . 
 
 
Find d y d x   if y = π x .  
d y d x = 
d ( π x ) d x = 
π d x d x = 
π · 1 = π . 
 
 
Find d y d x   if y = 1 .  
d y d x = 
d 1 d x = 
d ( 1 · 1 ) d x = 
1 · d 1 d x + d 1 d x · 1 = 
d 1 d x + d 1 d x . 
 
 
Subtract d 1 d x   from both sides. So
d 1 d x = 0 . 
 
 
Find d y d x   if y = 5 .  
d y d x = 
d 5 d x = 
d ( 5 · 1 ) d x = 
5 d 1 d x = 
5 · 0 = 0 . 
 
 
Find d y d x   if y = 6342 .  
d 6342 d x = 
d ( 6342 · 1 ) d x = 
6342 d 1 d x = 6342 · 0 = 0 . 
 
 
Find d c d x   if c   is a constant.
d c d x = 
d ( c · 1 ) d x = 
c d 1 d x = c · 0 = 0 . 
 
 
Find d y d x   if y = 3 x + 12 .  
d y d x = 
d ( 3 x + 12 ) d x = 
d ( 3 x ) d x + 
d 12 d x = 
3 d x d x + 0 = 
3 · 1 + 0 = 3 . 
 
 
Find d y d x   if y = x 2 .  
d y d x = 
d x 2 d x = 
d x · x d x = 
x · d x d x + = 
x · 1 + 1 · x = 2 x . 
d x d x · x 
 
 
Find d x 3 d x .  
d x 3 d x = 
d ( x 2 · x ) d x = 
x 2 d x d x + 
d x 2 d x · x = 
x 2 · 1 + 2 x · x = 3 
x 2 . 
 
 
Find d x 4 d x .  
d x 4 d x = 
d ( x 3 · x ) d x = 
x 3 · d x d x + 
d x 3 d x · x = 
x 3 · 1 + 3 x 2 · x = 
4 x 3 . 
 
 
⋮ 
 
Find d x 6342 d x .  
d x 6342 d x = 
d ( x 6341 · x ) d x = 
x 6341 · d x d x + 
d x 6341 d x · x = 
x 6341 · 1 + 6341 x 6340 · x = 
6342 x 6341 . 
 
Find d x n d x   if n = 1 , 2 , 3 , … .  
d x n d x  
 
 
=  
d ( x n - 1 · x ) d x  
 
 
 
 
=  
x n - 1 · d x d x + 
d n n - 1 d x · x 
 
 
 
 
=  
x n - 1 · 1 + 
( n - 1 ) x n - 2 · x  
( 
since we just found 
d x n - 1 d x = 
( n - 1 ) x n - 2  
 
 
) 
 
 
 
 
 
=  
x n - 1 + ( n - 1 )  
x n - 1 . 
 
 
 
 
 
So
d x n d x = 
n x n - 1 . 
 
 
Find d x n d x   if n = 0 .  
d x n d x = 
d x 0 d x = 
d 1 d x = 0 = n 
x n - 1 . 
 
 
Find d x - 6342 d x .  
d ( x - 6342 · x 6342 ) d x = 
d x 0 d x = d 1 d x  
= 0 . 
 
 
On the other hand,
d ( x - 6342 · x 6342 ) d x  
 
 
=  
x - 6342  
d x 6342 d x + 
d x - 6342 d x  
· x 6342  
 
 
 
 
=  
x - 6342 6342 x 6341 + 
d - 6342 d x · 
x 6342 . 
 
 
 
 
 
So
0 = 6342 x - 1 + x 6342  
d x - 6342 d x . 
 
 
So
d x - 6342 d x  
 
 
=  
- 6342 x - 1  
x - 6342  
 
 
 
 
=  
( - 6342 )  
x - 6342 . 
 
 
 
 
 
Find d x - n d x   if 
n = 1 , 2 , 3 , … .  
d x n x - n d x  
 
 
=  
x n d x - n d x + 
d x n d x x - n  
 
 
 
 
=  
x n d x - n d x  
+ n x n - 1 x - n  
 
 
 
 
=  
x n d x - n d x  
+ n x - 1 . 
 
 
 
 
 
On the other hand
d ( x n x - n ) d x  
= d x 0 d x = 
d 1 d x = 0 . 
 
 
So
x n d x - n d x  
+ n z - 1 = 0 . 
 
 
Solve for d x - n d x .   
Then
d x - n d x = 
- n x - 1 x - n = 
- n x - n - 1 . 
 
 
Let y = 3 x 3 + 5 x 2 + 2 x + 7 .   
Find d y d x .  
d y d x  
 
 
=  
d ( 3 x 3 + 5 x 2+ 2 x +7 >) d x  
 
 
 
 
=  
d ( 3 x 3 ) d x + 
d ( 5 x 2 + 2 x + 7 ) d x  
 
 
 
 
=  
d ( 3 x 3 ) d x + 
d ( 5 x 2 ) d x + 
d ( 2 x ) d x + 
d 7 d x  
 
 
 
 
=  
3 d x 3 d x + 
5 d x 2 d x + 
2 d x d x + 
7 d 1 d x  
 
 
 
 
=  
3 · 3 x 2 + 
5 · 2 x + 
2 · 1 + 
7 · 0 
 
 
 
 
=  
9 x 2 + 10 x + 2 . 
 
 
 
 
 
If y = - 7 x - 13 + 5 x - 7 + ( 6 + 2 i ) x 38 .   
Find d y d x .  
d y d x  
 
 
=  
d ( - 7 x - 13 + 5 x - 7 + ( 6 + 2 i ) x 38 ) d x  
 
 
 
 
=  
d ( - 7 x - 13 ) d x + 
d ( 5 x - 7 ) d x + 
d ( ( 6 + 2 i ) x 38 ) d x  
 
 
 
 
=  
- 7 d x - 13 d x + 
5 d x - 7 d x + 
( 6 + 2 i ) d x 38 d x  
 
 
 
 
=  
( - 7 ) ( - 13 ) x - 13 - 1 + 
5 ( - 7 ) x - 7 - 1 + 
( 6 + 2 i ) 38 x 38 - 1  
 
 
 
 
=  
91 x - 14 - 35 x - 8  
+ ( 228 + 76 i ) x 37 . 
 
 
 
 
 
Notes and References 
These are a typed copy of Lecture 3 from a series of handwritten lecture notes for the class MATH 221 given on September 11, 2000.
page history