MATH 221
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last updated: 28 July 2014
Lecture 3
A function takes in a number, chews on it and spits out another number
input number x ⟶
f
⟶ output number f ( x ) .
A constant function always spits out the same number, no matter what the input is.
f ( x ) = 2 .
x ⟶
f
⟶ 2
If x = 3 π + 7 then f ( x ) = 2 .
If x = 3 + 3 i then f ( x ) = 2 .
If x = 1 then f ( x ) = 2 .
If x = 7 then f ( x ) = 2 .
We call this function 2 .
5 ⟶
2
⟶ 2
10 ⟶
2
⟶ 2
So 2 sometimes means the number 2 and sometimes means the function 2 .
Derivatives
A derivative takes in a function, chews on it and spits out another function
f ⟶
d d x
⟶ d f d x .
The derivative d d x spits out a function according to the rules:
(1)
d x d x = 1 .
(2)
d ( c f ) d x = c d f d x ,
if c does not change when x changes.
(3)
d ( f + g ) d x = d f d x + d g d x .
(4)
d ( f g ) d x = f d g d x + d f d x g .
Find d y d x if y = 5 x .
d y d x =
d ( 5 x ) d x =
5 d x d x = 5 · 1
= 5 .
Find d y d x if y = π x .
d y d x =
d ( π x ) d x =
π d x d x =
π · 1 = π .
Find d y d x if y = 1 .
d y d x =
d 1 d x =
d ( 1 · 1 ) d x =
1 · d 1 d x + d 1 d x · 1 =
d 1 d x + d 1 d x .
Subtract d 1 d x from both sides. So
d 1 d x = 0 .
Find d y d x if y = 5 .
d y d x =
d 5 d x =
d ( 5 · 1 ) d x =
5 d 1 d x =
5 · 0 = 0 .
Find d y d x if y = 6342 .
d 6342 d x =
d ( 6342 · 1 ) d x =
6342 d 1 d x = 6342 · 0 = 0 .
Find d c d x if c is a constant.
d c d x =
d ( c · 1 ) d x =
c d 1 d x = c · 0 = 0 .
Find d y d x if y = 3 x + 12 .
d y d x =
d ( 3 x + 12 ) d x =
d ( 3 x ) d x +
d 12 d x =
3 d x d x + 0 =
3 · 1 + 0 = 3 .
Find d y d x if y = x 2 .
d y d x =
d x 2 d x =
d x · x d x =
x · d x d x + =
x · 1 + 1 · x = 2 x .
d x d x · x
Find d x 3 d x .
d x 3 d x =
d ( x 2 · x ) d x =
x 2 d x d x +
d x 2 d x · x =
x 2 · 1 + 2 x · x = 3
x 2 .
Find d x 4 d x .
d x 4 d x =
d ( x 3 · x ) d x =
x 3 · d x d x +
d x 3 d x · x =
x 3 · 1 + 3 x 2 · x =
4 x 3 .
⋮
Find d x 6342 d x .
d x 6342 d x =
d ( x 6341 · x ) d x =
x 6341 · d x d x +
d x 6341 d x · x =
x 6341 · 1 + 6341 x 6340 · x =
6342 x 6341 .
Find d x n d x if n = 1 , 2 , 3 , … .
d x n d x
=
d ( x n - 1 · x ) d x
=
x n - 1 · d x d x +
d n n - 1 d x · x
=
x n - 1 · 1 +
( n - 1 ) x n - 2 · x
(
since we just found
d x n - 1 d x =
( n - 1 ) x n - 2
)
=
x n - 1 + ( n - 1 )
x n - 1 .
So
d x n d x =
n x n - 1 .
Find d x n d x if n = 0 .
d x n d x =
d x 0 d x =
d 1 d x = 0 = n
x n - 1 .
Find d x - 6342 d x .
d ( x - 6342 · x 6342 ) d x =
d x 0 d x = d 1 d x
= 0 .
On the other hand,
d ( x - 6342 · x 6342 ) d x
=
x - 6342
d x 6342 d x +
d x - 6342 d x
· x 6342
=
x - 6342 6342 x 6341 +
d - 6342 d x ·
x 6342 .
So
0 = 6342 x - 1 + x 6342
d x - 6342 d x .
So
d x - 6342 d x
=
- 6342 x - 1
x - 6342
=
( - 6342 )
x - 6342 .
Find d x - n d x if
n = 1 , 2 , 3 , … .
d x n x - n d x
=
x n d x - n d x +
d x n d x x - n
=
x n d x - n d x
+ n x n - 1 x - n
=
x n d x - n d x
+ n x - 1 .
On the other hand
d ( x n x - n ) d x
= d x 0 d x =
d 1 d x = 0 .
So
x n d x - n d x
+ n z - 1 = 0 .
Solve for d x - n d x .
Then
d x - n d x =
- n x - 1 x - n =
- n x - n - 1 .
Let y = 3 x 3 + 5 x 2 + 2 x + 7 .
Find d y d x .
d y d x
=
d ( 3 x 3 + 5 x 2+ 2 x +7 >) d x
=
d ( 3 x 3 ) d x +
d ( 5 x 2 + 2 x + 7 ) d x
=
d ( 3 x 3 ) d x +
d ( 5 x 2 ) d x +
d ( 2 x ) d x +
d 7 d x
=
3 d x 3 d x +
5 d x 2 d x +
2 d x d x +
7 d 1 d x
=
3 · 3 x 2 +
5 · 2 x +
2 · 1 +
7 · 0
=
9 x 2 + 10 x + 2 .
If y = - 7 x - 13 + 5 x - 7 + ( 6 + 2 i ) x 38 .
Find d y d x .
d y d x
=
d ( - 7 x - 13 + 5 x - 7 + ( 6 + 2 i ) x 38 ) d x
=
d ( - 7 x - 13 ) d x +
d ( 5 x - 7 ) d x +
d ( ( 6 + 2 i ) x 38 ) d x
=
- 7 d x - 13 d x +
5 d x - 7 d x +
( 6 + 2 i ) d x 38 d x
=
( - 7 ) ( - 13 ) x - 13 - 1 +
5 ( - 7 ) x - 7 - 1 +
( 6 + 2 i ) 38 x 38 - 1
=
91 x - 14 - 35 x - 8
+ ( 228 + 76 i ) x 37 .
Notes and References
These are a typed copy of Lecture 3 from a series of handwritten lecture notes for the class MATH 221 given on September 11, 2000.
page history