MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 31

Averages

Average of a bunch of numbers:

(a) Add up the numbers
(b) Divide by the number of numbers

The average of 1,2,3,,100 1+2+3+4++97+98+99+100 100+99+98+97++4+3+2+1 101+101+101+101++101+101+101+101=10100 So 1+2+3++100= 101002=5050. So the average is 1+2++100100=5050100=50.5.

Compute the average of 1, 13, 132, 133, , 1350 (1+x+x2++x50) (1-x) = 1+x+x2+x3++ x50 1-x-x2-x3- -x50-x50 = 1-x51 So 1+x+x2++x50= 1-x511-x. So 1+13+132+ +(13)50= 1-(13)511-13 =1-135123= 3-13502. So 1+13+132++135051 =3-1350251= 3-1350102 3102.03.

Estimating the average

What is the average of 1,12,13,,1100? 11+12+13+ +199 is the area of the boxes in the picture 1 2 3 99 100 x 1 y y=1x So 1+12+13++ 1991100 1xdx=lnx |x=1x=100= ln100. Next, 12+13+14++1100 is the area of the boxes in the picture 1 2 3 4 99 100 x 1 y y=1x So 12+13++1100 11001xdx=ln x|1100=ln100. So 12+13++1100100 ln100+1100100= ln100100+11002 and 12+13++1100100 ln100+1100= ln100100+1100.

Average value of a function

a b x y y=f(x) Average value offfroma tob = Average height of little boxes = limΔx0 f(a)Δx+ f(a+Δx)Δx++ f(b-Δx)Δx (number of boxes)Δx = limΔx0 f(a)Δx+ f(a+Δx)Δx++ f(b-Δx)Δx b-a = abf(x)dx b-a = (Area underffromatob)b-a. So (Average value)(b-a)= Area underf(x)fromatobb-a. b-a { A has the same area as a b x y y=f(x)

Find the average value of f(x)=sin2x, 0xπ2. π 2 π x 1 y y=sin2x Average value is 0π2f(x)dx π2-0 = 0π2sin2xdxπ2 = 2π0π212 (sin2x+sin2x)dx = 2π0π212 (1-cos2x+sin2x) dx = 1π0π2 (1-(cos2x-sin2x))dx = 1π0π2 (1-cos2x)dx = 1π0π2 (1-cos2x)dx = 1π(x-sin2x2) |0π2 = 1π(π2-sin2π22) -1π(0-sin02) = 1π(π2-0) = 12. So π 2 x 1 2 y is the same area as π 2 x 1 1 2 y y=sin2x

Notes and References

These are a typed copy of Lecture 31 from a series of handwritten lecture notes for the class MATH 221 given on November 22, 2000.

page history