MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 33

Find the area of the surface obtained by rotating the curve determined by x=acos3θ, y=asin3θ about the x-axis.

To graph this: cos3θ=xaand sin3θ=ya. So cosθ=(xa)13 andsinθ= (ya)13. Since cos2θ+sin2θ=1, (xa)23+ (ya)23=1. So we have to graph x23+y23=a23. - a a x - a a y x2+y2=a2 x y x1+y1=a1 - a a x - a a y x23+y23=a23 So when this is rotated about the x-axis - a a x - a a y Slice: R ds Surface area of a slice:πR2ds. Add up slices fromx=0to x=aand then multiply by2. Surface area = 2x=0x=a πR2ds = 2x=0x=a πy2 (dx)2+(dy)2 = 2x=0x=a πy2 (dx)2+(dy)2dθ dθ = 2x=0x=a πy2 (dx)2+(dy)2(dθ)2 dθ = 2x=0x=aπy2 (dxdθ)2+(dydθ)2 dθ. Since x=acos3θ and y=asin3θ dxdθ=-3a cos2θsinθ anddydθ =3asin2θcos θ. So Surface area = 2x=0x=a πy2 (-3acos2sinsinθ)2+ (3asin2θcosθ)2 dθ = 2x=0x=aπ a2sin6θ 9a2cos4θ sin2θ+9a2 sin4θcos2 θ dth = 2x=0x=a πa2sin6θ 9a2sin2θ cos2θ (cos2θ+sin2θ) dθ = 2x=0x=aπ a2sin6θ3a sinθcosθdθ = 2x=0x=a3 πa3sin7θ cosθdθ = 6πa3sin8θ8 |x=0x=a = 6πa38sin8θ |acos3θ=0acos3θ=a = 3πa34 sin8θ |cosθ=0cosθ=1 = 3a3π4sin8θ |θ=π2θ=0 = 3πa34sin80- 3πa34sin8π2 = -3πa34·18 = -3πa34. So the surface area is 3πa34.

Moments and center of mass

A moment and a center of mass are the same thing.

The center of mass is the average position of the mass in an object. Center of mass = position of mass·massmass = (position of a slice)·(mass of a slice) (mass of a slice) . Note: mass of a slice=(volume of slice)· (density of the slice). Center of mass and center of gravity are the same thing.

Find the center of mass of a solid hemisphere of radius r if its density at a point P is proportional to the distance between P and the base of the hemisphere. - r r x r y Slice: R dy } Volume of a slice:πR2dy Density of a slice=Height of a slice Mass of a slice=πR2dy (height of slice) Add slices fromy=0to y=r. Center of mass = (center of mass of slice)(mass of slice) (mass of slice) = y=0y=ryπR2dy(height of slice) y=0y=rπR2dy(height of slice) = y=0y=r yπx2dy·y y=0y=r πx2dy·y = y=0y=r πx2y2dy y=0y=r πx2ydy = y=0y=r π(r2-y2) y2dy y=0y=r π(r2-y2) ydy = y=0y=r (πr2y2-πy4) dy y=0y=r (πr2y-πy3) dy = πr2y33- πy55 |y=0y=r πr2y22- πy44 |y=0y=r = πr53- πr55- (0-0) πr42- πr44- (0-0) = πr5(13-15) πr4(12-14) = r(215)(14) = r215·4 = 8r15. So the center of mass is at (0,8r15).

Notes and References

These are a typed copy of Lecture 33 from a series of handwritten lecture notes for the class MATH 221 given on November 29, 2000.

page history