MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 34

Find the center of gravity of the arc length of one quadrant of the circle. r x r y x=rcosθ y=rsinθ The center of mass will be on the line y=x so its x-coordinate and its y-coordinate will be the same. Chop up the curve into little pieces dy dx ds x-coordinate of position of little piece is x. Mass of little piece is (density)·ds. Add up little pieces from θ=0 to θ=π2. x-coordinate of center of mass = θ=0θ=π2 xδds θ=0θ=π2 δds whereδ=density = θ=0θ=π2 xδ(dx)2+(dy)2 θ=0θ=π2 δ(dx)2+(dy)2 = θ=0θ=π2 xδ(dxdθ)2+(dydθ)2 dθ θ=0θ=π2 δ(dxdθ)2+(dydθ)2 dθ = θ=0θ=π2 δrcosθ (-rsinθ)2+(rcosθ)2 dθ θ=0θ=π2δ (-rsinθ)2+(cosθ)2 dθ = θ=0θ=π2 δrcosθ r2sin2θ+r2cos2θ dθ θ=0θ=π2δ r2sin2θ+r2cos2θ dθ = θ=0θ=π2 δrcosθrdθ θ=0θ=π2 δrdθ = δr2sinθ |θ=0θ=π2 δrθ |θ=0θ=π2 = δr2sinπ2-δr2·0 δrπ2-δr·0 = δr2 δrπ2 = 2rπ.

Find the center of gravity of the area bounded by the curve y=x-x2 and the line x+y=0. 1 x -1 1 4 y x+y=0 y=x-x2 Slice: L dx mass of slice: (density)Ldx y-coordinate of center of mass of slice is at half way between top and bottom x-coordinate of center of mass of slice is at x-position of slice Add up slices fromx=0toxat right intersection point. When x+y=0 and y=x-x2 intersect y=-x=x-x2. So x2-2x=0. So x(x-2)=0. So x=0 or x=2. x-coordinate of center of mass of area = x=0x=2 (x-position of slice)δLdx x=0x=2 δLdx whereδis density, = x=0x=2 xδ(ytop-ybottom)dx x=0x=2δ (ytop-ybottom)dx = x=0x=2xδ ((x-x2)-(-x)) dx x=0x=2δ ((x-x2)-(-x)) dx = x=0x=2δx (2x-x2)dx x=0x=2δ (2x-x2)dx = x=0x=2δ (2x2-x3)dx x=0x=2δ (2x-x2)dx = δ(2x33-x44) |x=0x=2 δ(2x22-x33) |x=0x=2 = 2·23e- 244-(0-0) 2222- 233-(0-0) = 24(13-14) 23(12-13) = 2(112) (16) = 22 = 1. y-coordinate of center of mass of area = x=0x=2 (y-position of slice)δLdx x=0x=2 δLdx = x=0x=2 ((ytop-ybottom2)+ybottom) δ(ytop-ybottom)dx x=0x=2δ (ytop-ybottom)dx = x=0x=2δ ((x-x2)-(-x)2+(-x)) ((x-x)2-(-x)) dx x=0x=2δ ((x-x2)-(-x))dx = x=0x=2δ (-x22) (2x-x2)dx x=0x=2δ (2x-x2)dx = x=0x=2δ (-2x32+x42) dx x=0x=2δ (2x-x2)dx = δ(-x44+x510) |x=0x=2 δ(x2-x33) |x=0x=2 = -244+ 2510 24-233 = 24(-14+15) 23(2-13) = 2(-120) 53 = -2·3 5·20 = -35·10 = -350. So the center of mass is (1,-350).

Notes and References

These are a typed copy of Lecture 34 from a series of handwritten lecture notes for the class MATH 221 given on December 1, 2000.

page history