MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 36

Limits

When a limit looks like it is coming out to 00 it could really be coming out to anything.

limx05xx=00?? BAD limx05xx= limx05=5.

limx0642xx=00?? BAD limx0642xx= limx0642=642.

limx0x2x=00?? BAD limx0x2x= limx0x=0.

limx0xx2=00?? BAD limx0xx2= limx01x=UNDEFINED since limx0+ xx2 = limx0+ 1x=, limx0- xx2 = limx0- 1x=-.

Bad limits 00 and and L'Hopital's rule

If limxa f(x)g(x)= 00???BAD or limxa f(x)g(x)= ???BAD then sometimes it works to use limxa f(x)g(x)= limxa f(x)g(x).

limx1lnxx-1

First: limx1 lnxx-1=00 ???BAD Try L'Hopital's rule: limx1 lnxx-1= limx1 1x1= limx11x =11=1.

limxlnxex

First: limx lnxex= ???BAD Try L'Hopital's rule: limx lnxex= limx 1xex= limx 1xex=0.

limx(lnx)3x2

First: limx (lnx)2x2 =???BAD Try L'Hopital's rule: limx (lnx)2x2 =limx 3(lnx)21x2x =limx 3(lnx)22x2 =??? Try again: limx 3(lnx)22x2= limx 6(lnx)1x4x= limx 6lnx4x2= ??? Try again: limx 6lnx4x2= limx 61x8x= limx 68x2=0.

Why does L'Hopital's rule work?

If limxaf(x)g(x)=00??? then f(a)=0 and g(a)=0. Let x=a+Δx. Then limxa f(x)g(x) = limΔx0 f(a+Δx)g(a+Δx) = limΔx0 f(a+Δx)-f(a) g(a+Δx)-g(a) = limΔx0 f(a+Δx)-f(a)Δx g(a+Δx)-g(a)Δx = dfdx|x=a dgdx|x=a = limxa dfdx dgdx . So limxa f(x)g(x) = limxa ratef(x)approaches 0 rateg(x)approaches 0 = limxa dfdx dgdx .

Bad limits 00 and

limx05x3x=00??? BAD limx0= 5x3x= limx0 53=53, since rate5xgoes to0 rate3xgoes to0 = d5xdx d3xdx =53, i.e. 5x goes to 0 53 as fast as 3x goes to 0.

limx5xx=??? BAD limx5xx Here 5x goes to 5 times as fast as x goes to . limx 5xx= limx5=5.

limx01x21x3=??? limx0 1x21x3= limx0 x3x2= limx0x=0. Here limx0x3x2=00??? but x3 goes to 0 much faster than x2 goes to 0. So limx0 x3x2=0.

limx0-lnx1x=??? limx0 -lnx1x = limx0 rate-lnxgoes to rate1xgoes to = limx0 -1x-1x2 = limx0 x2x = limx0x = 0.

Other bad limits -, 0·, 1, 00

(a) 0·

limxπ(x-π)cotx=0·??? limxπ (x-π) cotx = limxπ x-πtanx= 00??? limxπ x-πtanx = limxπ rate thatx-πgoes to0 rate thattanxgoes to0 = limxπ 1sec2x= limxπcos2x =cos2π=(-1)2=1.

(b) 1

limx0(1-2x)1x=?1??? BAD limx0 (1-2x)1x = limx0 (eln(1-2x))1x = limx0 e1xln(1-2x) = limx0 e-2ln(1-2x)-2x = e-2·1 = e-2.

(c) 00

limx0xx=00??? BAD limx0xx = limx0 (elnx)x = limx0 exlnx = limx0 elnx1x = e???BAD limx0 elnx1x = limx0 e1x-1x2 = limx0 e-x2x = limx0 e-x = e-0 = 1.

(d) -

limx01x-1x=-??? BAD limx01x- 1x=limx0 0=0.

limx0x-1-cscx=-??? BAD limx0x-1- cscx=limx01x -1sinx=limx0 sinx-xxsinx= 00??? Try L'Hopital: limx0 sinx-xxsinx= limx0 cosx-1sinx+xcosx= 00??? Try again: limx0 cosx-1sinx+xcosx = limx0 cosx-1sinx+xcosx = limx0 -sinxcosx+cosx-xsinx = -01+1-0 = -02 = 0.

An example of when L'Hopital's rule doesn't work

limx0x-(lnx)-1=00??? limx0 x-(lnx)-1= limx0 1+(lnx)-21x= limx0 x(lnx)-2= 00??? Try again: limx0 x(lnx)-2= limx0 1-2(lnx)-31x= limx0 x-2(lnx)-3= 00??? Try again: limx0 x-2(lnx)-3= limx0 16(lnx)-41x= limx0 x6(lnx)-4= 00??? Goes on forever Instead do limx0 x-(lnx)-1= limx0-xlnx= limx0-lnx1x= ??? Then limx0 -lnx1x= limx0 -1x-1x2= limx0 x2x= limx0x=0.

Notes and References

These are a typed copy of Lecture 36 from a series of handwritten lecture notes for the class MATH 221 given on December 6, 2000.

page history