MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 37

Logarithmic differentiation

Sometimes it can simplify calculations to take the log of both sides before taking the derivative.

Find dydx when y=(x+2)52(x+6)12(x+3)72. lny = ln ( (x+2)52(x+6)12(x+3)72 ) = ln(x+2)52- ln(x+6)12- ln(x+3)72 = 52ln(x+2)- 12ln(x+6)- 72ln(x+3). So, by taking the derivative with respect to x, 1ydydx= 521(x+2)- 121(x+6)- 721(x+3). So dydx = y ( 52(1x+2)- 12(1x+6)- 72(1x+3) ) = (x+2)52 (x+6)12(x+3)72 ( 52(1x+2)- 12(1x+6)- 72(1x+3) ) .

If xmyn=(x+y)m+n show that dydx=yx.

Take the log of both sides ln(xmyn)= ln((x+y)m+n). So lnxm+ lnyn= (m+n)ln(x+y). So mlnx+ nlny= (m+n) ln(x+y). Take the derivative with respect to x. mx+ny dydx= (m+n) (1x+y) (1+dydx). So mx+nydydx= m+nx+y+ (m+nx+y) dydx. So (ny-m+nx+y) dydx= m+nx+y-mx. So (nx+ny-my-nyy(x+y)) dydx= mx+nx-mx-myx(x+y). So (nx-myy) dydx= nx-myx. So dydx=yx.

Often the derivative can be done as usual.

Find dydx when y=ax+etanx+(cotx)cosx. y = (elna)x+ etanx+ (eln(cotx))cosx = exlna+ etanx+ ecosxln(cotx). So dydx = exlnalna+ etanxsec2x+ ecosxln(cotx) ( cosx(-csc2x)cotx+ (-sinx)ln(cotx) ) = axlna+ etanxsec2x+ (cotx)cosx ( cosx-1sin2x cosxsinx +(-sinx)ln (cotx) ) = axlna+etanx sec2x+(cotx)cosx (-cscx-sinxln(cotx)).

Find dydx when y=xxx.

Then y=xy. So y=(elnx)y=eylnx. So dydx=eylnx d(ylnx)dx= eylnx (yx+dydxlnx). So dydx=yx eylnx+ lnxeylnx dydx. So (1-lnxeylnx) dydx=yxxy. So dydx= yxyx1-lnx·xy= yxyx(1-xylnx).

Motion

The main point is: If s=distance traveled then dsdt=speed. Speed is the same thing as velocity and dspeeddt= dvelocitydt= acceleration.

A particle falls from the top of a tower and in the last second before it hits the ground it falls 925 of the total height of the tower. Find the height of the tower.

Tower: { H Position of particle is ???
Acceleration of particle is -9.8ms2.
So dvdt=-9.8. So dv=-9.8dt. So dv=-9.8dt. So v=-9.8t+c. Now v at time 0 is 0. So 0=-9.8·0+c. So c=0 and v=-9.8t. Since v=dsdt, ds=vdt=-9.8tdt. So ds=09.8tdt. So s=-9.8t22+c1. At time 0, s=H. So H=-9.82·02+c1. So c1=H. So s=-9.8t22+H. The particle hits the ground when s=0. 0=-9.82t2+H. So 9.82t2=H. So t2=2H9.8= H4.9. So t=H4.9. So the particle hits the ground when t=H4.9. One second before the particle hits the ground its height is 925H. So when t=H4.9-1, s=925H. So 925H=-9.82 (H4.9-1)2+H. So 925H = -4.9(H4.9-24.9H+1)+H = -H+24.9H-4.9+H = 24.9H-4.9. So 925H-24.9 H+4.9=0. So H = 24.9± (24.9)2-4.925(4.9) 2.925 = 24.9± 4(4.9)-4(4.9)925 1825 = 24.9± 24.91625 1825 = 24.9(1±45) 1825 = { 4.995 925 4.915 925 = { 54.9 or 59 4.9 .

Notes and References

These are a typed copy of Lecture 37 from a series of handwritten lecture notes for the class MATH 221 given on December 8, 2000.

page history