MATH 221
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last updated: 30 July 2014
Lecture 4
Last time we pointed out that there are different kinds of derivatives:
Derivative with respect to x
Derivative with respect to g
f ⟶
d d x
⟶ d f d x
f ⟶
d d g
⟶ d f d g
This one satisfies
This one satisfies
d x d x
=
1
d ( y + z ) d x
=
d y d x +
d z d x
d ( c y ) d x
=
c d y d x ,
if c is a constant
d ( y z ) d x
=
y d z d x +
d y d x z
d g d g
=
1
d ( y + z ) d g
=
d y d g +
d z d g
d ( c y ) d g
=
c d y d g ,
if c is a constant
d ( y z ) d z
=
y d z d g +
d y d g z
What is the relation between d f d x and
d f d g ??
⟶
d d g
⟶
⟶
d d x
⟶
d g 0 d g
=
d 1 d g = 0
d g 0 d x
=
d 1 d x = 0
d g d g
=
1
d g d x
=
d g d x
d g 2 d g
=
d ( g · g ) d g
=
g d g d g +
d g d g g
=
g + g = 2 g
d g 2 d x
=
d ( g · g ) d x
=
g d g d x +
d g d x · g
=
2 g d g d x
d g 3 d g
=
d ( g 2 · g ) d g
=
g 2 d g d g +
d g 2 d g g
=
g 2 + 2 g · g = 3 g 2
d g 3 d x
=
d ( g 2 · g ) d x
=
g 2 d g d x +
d g 2 d x g
=
g 2 d g d x +
2 g d g d x g
=
g 2 d g d x +
2 g 2 d g d x
d g 4 d g
=
d ( g 4 · g ) d g
=
g 3 d g d g +
d g 3 d g · g
=
g 3 + 3 g 2 · g
=
4 g 3
d g 4 d x
=
d ( g 3 · g ) d x
=
g 3 d g d x +
d g 3 d x g
=
g 3 d g d x +
3 g 2 d g d x g
=
4 g 3 d g d x
⋮
⋮
d g 6342 d g
=
6342 g 6341
d g 6342 d x
=
6342 g 6341 d g d x
d ( 3 g 2 + 2 g + 7 ) d g
=
d ( 3 g 2 ) d g +
d ( 2 g ) d g +
d 7 d g
=
3 d g 2 d g +
2 d g d g + 0
=
3 · 2 g + 2 · 1
=
6 g + 2
d ( 3 g 2 + 2 g + 7 ) d x
=
d ( 3 g 2 ) d x +
d ( 2 g ) d x +
d 7 d x
=
3 d g 2 d x +
2 d g d x +
d 7 d x
=
3 · 2 g d g d x +
2 d g d x + 0
=
6 g d g d x +
2 d g d x
=
( 6 g + 2 ) d g d x
If f is any function, then we have the chain rule
d f d x =
d f d g
d g d x ,
i.e.
f ⟶
d d x
⟶ d g d x
d g d x
f ⟶
d d g
⟶ d f d g .
Find d y d x when y = ( 2 x - 5 ) 2 .
If g = 2 x - 5 then y = g 2 .
d y d x =
d y d g
d g d x
=
d g 2 d g
d g d x = 2 g
d ( 2 x - 5 ) d x
= 2 g ( 2 )
=
4 ( 2 x - 5 ) .
Find d d x when y = ( 3 x - 4 ) 3 .
If g = 3 x - 4 then y = g 3 .
d y d x =
d y d g
d g d x
=
d g 3 d g
d g d x =
3 g 2 d g d x =
3 ( 3 x - 4 )
d ( 3 x - 4 ) d x
=
3 ( 3 x - 4 ) · 3 =
27 x - 36 .
Find d y d x when y = ( 2 x - 5 ) 2 ( 3 x - 4 ) 3 .
d y d x
=
d ( 2 x - 5 ) 2 ( 3 x - 4 ) 3 d x
=
( 2 x - 5 ) 2
d ( 3 x - 4 ) 3 d x +
d ( 2 x - 5 ) 2 d x
( 3 x - 4 ) 3
=
( 2 x - 5 ) 2
3 ( 3 x - 4 ) 2 ·
d ( 3 x - 4 ) d x
+ ( 3 x - 4 ) 3
2 ( 2 x - 5 )
d ( 2 x - 5 ) d x
=
3 ( 2 x - 5 ) 2
( 3 x - 4 ) 2 · 3 + 2
( 2 x - 5 )
( 3 x - 4 ) 3 · 2
=
( 2 x - 5 ) ( 3 x - 4 ) 2
( 9 ( 2 x - 5 ) + 4 ( 3 x - 4 ) )
=
( 2 x - 5 )
( 3 x - 4 ) 2
( 30 x - 61 ) .
Find d y d x when
y = ( x - 3 x - 4 ) 2 .
d ( x - 3 x - 4 ) 2 d x
=
2 ( x - 3 x - 4 )
d ( x - 3 x - 4 ) d x
=
2 ( x - 3 x - 4 )
d ( ( x - 3 ) ( x - 4 ) - 1 ) d x
=
2 ( x - 3 x - 4 )
(
( x - 3 ) d ( x - 4 ) - 1 d x +
d ( x - 3 ) d x ( x - 4 ) - 1
)
=
2 ( x - 3 x - 4 )
(
( x - 3 ) ( - 1 )
( x - 4 ) - 2
d ( x - 4 ) d x +
1 · ( x - 4 ) - 1
)
=
2 ( x - 3 x - 4 )
(
- ( x - 3 ) ( x - 4 ) 2
· 1 + 1 x - 4
)
=
2 ( x - 3 x - 4 )
(
- x + 3 ( x - 4 ) 2
+ x - 4 ( x - 4 ) 2
)
=
2 ( x - 3 x - 4 )
( - 1 ) ( x - 4 ) 2
=
- 2 x + 6 ( x - 4 ) 3
Find d x m n d x .
d ( x m n ) n d x =
d x m d x = m x m - 1 .
On the other hand
d ( x m n ) n d x =
n ( x m n ) n - 1
d x m n d x .
So
m x m - 1 = n
( x m n ) n - 1
d x m n d x
and we can solve for d x m n d x .
d x m n d x
=
m x m - 1
n ( x m n ) n - 1
=
m x m - 1
n ( x m n ) n ( x m n ) - 1
=
m x m - 1
m x m 1 x m n
=
m n x - 1 x m n
= m n x m n = 1 .
So
d x m n d x =
m n x m n - 1 .
Find d y d x when y = x 1 - 2 x .
d y d x
=
d x 1 - 2 x d x
=
d x ( 1 - 2 x ) - 1 d x
=
d x ( ( 1 - 2 x ) 1 2 ) - 1 d x
=
d x ( 1 - 2 x ) - 1 2 d x
=
x d ( 1 - 2 x ) - 1 2 d x +
d x d x ( 1 - 2 x ) - 1 2
=
x ( - 1 2 ) ( 1 - 2 x ) - 3 2
d ( 1 - 2 x ) d x + 1 ·
1 1 - 2 x
=
- x 2 ( 1 - 2 x ) 3 2
· ( - 2 ) + 1 ( 1 - 2 x ) 1 2
=
x + 1 - 2 x
( 1 - 2 x ) 3 2
=
1 - x ( 1 - 2 x ) 3 2 .
Notes and References
These are a typed copy of Lecture 4 from a series of handwritten lecture notes for the class MATH 221 given on September 13, 2000.
page history