MATH 221 
Arun Ram 
Last updated: 30 July 2014
Lecture 4 
Last time we pointed out that there are different kinds of derivatives:
Derivative with respect to   x Derivative with respect to   g  
f ⟶ 
d d x  
 
 
 
 
 
 
⟶ d f d x  
f ⟶ 
d d g  
 
 
 
 
 
 
⟶ d f d g  
 
This one satisfies This one satisfies  
d x d x  
 
= 
1 
 
 
 
d ( y + z ) d x  
 
= 
d y d x + 
d z d x  
 
 
d ( c y ) d x  
 
= 
c d y d x , if   c   is a constant 
 
 
 
d ( y z ) d x  
 
= 
y d z d x + 
d y d x z 
 
 
 
 
 
d g d g  
 
= 
1 
 
 
 
d ( y + z ) d g  
 
= 
d y d g + 
d z d g  
 
 
d ( c y ) d g  
 
= 
c d y d g , if   c   is a constant 
 
 
 
d ( y z ) d z  
 
= 
y d z d g + 
d y d g z 
 
 
 
 
 
 
 
 
What is the relation between d f d x d f d g ?? 
⟶ 
d d g  
 
 
 
 
 
 
⟶ 
 
⟶ 
d d x  
 
 
 
 
 
 
⟶ 
 
 
d g 0 d g  
 
= 
d 1 d g = 0 
 
 
 
 
 
d g 0 d x  
 
= 
d 1 d x = 0 
 
 
 
 
 
 
d g d g  
 
= 
1 
 
 
 
 
 
d g d x  
 
= 
d g d x  
 
 
 
 
 
d g 2 d g  
 
= 
d ( g · g ) d g  
 
 
= 
g d g d g + 
d g d g g 
 
 
 
= 
g + g = 2 g 
 
 
 
 
 
d g 2 d x  
 
= 
d ( g · g ) d x  
 
 
= 
g d g d x + 
d g d x · g 
 
 
 
= 
2 g d g d x  
 
 
 
 
 
d g 3 d g  
 
= 
d ( g 2 · g ) d g  
 
 
= 
g 2 d g d g + 
d g 2 d g g 
 
 
 
= 
g 2 + 2 g · g = 3 g 2  
 
 
 
 
d g 3 d x  
 
= 
d ( g 2 · g ) d x  
 
 
= 
g 2 d g d x + 
d g 2 d x g 
 
 
 
= 
g 2 d g d x + 
2 g d g d x g 
 
 
 
= 
g 2 d g d x + 
2 g 2 d g d x  
 
 
 
 
 
d g 4 d g  
 
= 
d ( g 4 · g ) d g  
 
 
= 
g 3 d g d g + 
d g 3 d g · g 
 
 
 
= 
g 3 + 3 g 2 · g 
 
 
 
= 
4 g 3  
 
 
 
 
d g 4 d x  
 
= 
d ( g 3 · g ) d x  
 
 
= 
g 3 d g d x + 
d g 3 d x g 
 
 
 
= 
g 3 d g d x + 
3 g 2 d g d x g 
 
 
 
= 
4 g 3 d g d x  
 
 
 
 
 
⋮ ⋮  
d g 6342 d g  
 
= 
6342 g 6341  
 
 
 
 
d g 6342 d x  
 
= 
6342 g 6341 d g d x  
 
 
 
 
 
d ( 3 g 2 + 2 g + 7 ) d g  
 
= 
d ( 3 g 2 ) d g + 
d ( 2 g ) d g + 
d 7 d g  
 
 
= 
3 d g 2 d g + 
2 d g d g + 0 
 
 
 
= 
3 · 2 g + 2 · 1 
 
 
 
= 
6 g + 2 
 
 
 
 
 
d ( 3 g 2 + 2 g + 7 ) d x  
 
= 
d ( 3 g 2 ) d x + 
d ( 2 g ) d x + 
d 7 d x  
 
 
= 
3 d g 2 d x + 
2 d g d x + 
d 7 d x  
 
 
= 
3 · 2 g d g d x + 
2 d g d x + 0 
 
 
 
= 
6 g d g d x + 
2 d g d x  
 
 
= 
( 6 g + 2 ) d g d x  
 
 
 
 
 
 
 
If f chain rule 
d f d x = 
d f d g d g d x , 
 
 
i.e.
f ⟶ 
d d x  
 
 
 
 
 
 
⟶ d g d x d g d x f ⟶ 
d d g  
 
 
 
 
 
 
⟶ d f d g . 
 
 
Find d y d x y = ( 2 x - 5 ) 2 . 
If g = 2 x - 5 y = g 2 . 
d y d x = 
d y d g d g d x  
 
= 
d g 2 d g d g d x = 2 g 
d ( 2 x - 5 ) d x = 2 g ( 2 )  
 
 
= 
4 ( 2 x - 5 ) . 
 
 
 
 
 
Find d d x y = ( 3 x - 4 ) 3 . 
If g = 3 x - 4 y = g 3 . 
d y d x = 
d y d g d g d x  
 
= 
d g 3 d g d g d x = 
3 g 2 d g d x = 
3 ( 3 x - 4 ) d ( 3 x - 4 ) d x  
 
 
= 
3 ( 3 x - 4 ) · 3 = 
27 x - 36 . 
 
 
 
 
 
Find d y d x y = ( 2 x - 5 ) 2 ( 3 x - 4 ) 3 . 
d y d x  
 
= 
d ( 2 x - 5 ) 2 ( 3 x - 4 ) 3 d x  
 
 
= 
( 2 x - 5 ) 2 d ( 3 x - 4 ) 3 d x + 
d ( 2 x - 5 ) 2 d x ( 3 x - 4 ) 3  
 
 
= 
( 2 x - 5 ) 2 3 ( 3 x - 4 ) 2 · 
d ( 3 x - 4 ) d x + ( 3 x - 4 ) 3 2 ( 2 x - 5 ) d ( 2 x - 5 ) d x  
 
 
= 
3 ( 2 x - 5 ) 2 ( 3 x - 4 ) 2 · 3 + 2 
( 2 x - 5 ) ( 3 x - 4 ) 3 · 2 
 
 
 
= 
( 2 x - 5 ) ( 3 x - 4 ) 2 ( 9 ( 2 x - 5 ) + 4 ( 3 x - 4 ) )  
 
 
= 
( 2 x - 5 ) ( 3 x - 4 ) 2 ( 30 x - 61 ) . 
 
 
 
 
 
Find d y d x y = ( x - 3 x - 4 ) 2 . 
d ( x - 3 x - 4 ) 2 d x  
 
= 
2 ( x - 3 x - 4 ) d ( x - 3 x - 4 ) d x  
 
 
= 
2 ( x - 3 x - 4 ) d ( ( x - 3 ) ( x - 4 ) - 1 ) d x  
 
 
= 
2 ( x - 3 x - 4 ) 
( 
( x - 3 ) d ( x - 4 ) - 1 d x + 
d ( x - 3 ) d x ( x - 4 ) - 1 ) 
 
 
 
 
= 
2 ( x - 3 x - 4 ) 
( 
( x - 3 ) ( - 1 ) ( x - 4 ) - 2 d ( x - 4 ) d x + 
1 · ( x - 4 ) - 1 ) 
 
 
 
 
= 
2 ( x - 3 x - 4 ) 
( 
- ( x - 3 ) ( x - 4 ) 2 · 1 + 1 x - 4 ) 
 
 
 
 
= 
2 ( x - 3 x - 4 ) 
( 
- x + 3 ( x - 4 ) 2 + x - 4 ( x - 4 ) 2 ) 
 
 
 
 
= 
2 ( x - 3 x - 4 ) ( - 1 ) ( x - 4 ) 2  
 
 
= 
- 2 x + 6 ( x - 4 ) 3  
 
 
 
 
Find d x m n d x . 
d ( x m n ) n d x = 
d x m d x = m x m - 1 . 
 
 
On the other hand
d ( x m n ) n d x = 
n ( x m n ) n - 1 d x m n d x . 
 
 
So
m x m - 1 = n 
( x m n ) n - 1 d x m n d x  
 
and we can solve for d x m n d x . 
d x m n d x  
 
= 
m x m - 1 n ( x m n ) n - 1  
= 
m x m - 1 n ( x m n ) n ( x m n ) - 1  
 
 
 
= 
m x m - 1 m x m 1 x m n  
= 
m n x - 1 x m n = m n x m n = 1 . 
 
 
 
 
 
So
d x m n d x = 
m n x m n - 1 . 
 
 
Find d y d x y = x 1 - 2 x . 
d y d x  
 
= 
d x 1 - 2 x d x  
 
 
= 
d x ( 1 - 2 x ) - 1 d x  
 
 
= 
d x ( ( 1 - 2 x ) 1 2 ) - 1 d x  
 
 
= 
d x ( 1 - 2 x ) - 1 2 d x  
 
 
= 
x d ( 1 - 2 x ) - 1 2 d x + 
d x d x ( 1 - 2 x ) - 1 2  
 
 
= 
x ( - 1 2 ) ( 1 - 2 x ) - 3 2 d ( 1 - 2 x ) d x + 1 · 
1 1 - 2 x  
 
 
= 
- x 2 ( 1 - 2 x ) 3 2 · ( - 2 ) + 1 ( 1 - 2 x ) 1 2  
 
 
= 
x + 1 - 2 x ( 1 - 2 x ) 3 2  
 
 
 
= 
1 - x ( 1 - 2 x ) 3 2 . 
 
 
 
 
 
Notes and References 
These are a typed copy of Lecture 4 from a series of handwritten lecture notes for the class MATH 221 given on September 13, 2000.
page history