MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 30 July 2014

Lecture 5

We now know that the derivative with respect to x f ddx dfdx satisfies

(1) dxdx=1.
(2) d(u+v)dx= dudx+ dvdx.
(3) d(cf)dx= cdfdx, if c is a constant.
(4) d(uv)dx= udbdx+ dudxv.
(5) d1dx=0.
(6) dxdx=0, if c is a constant.
(7) dxndx=nxn-1, if n=1,2,3,.
(8) dxndx=nxn-1, if n=0.
(9) dx-ndx=(-n)x-n-1, if n=1,2,3,.
(10) dfdx=dfdxdgdx.

Find dydx when y=(2x-5)2.

If g=2x-5 then y=g2. So dydx = dydg dgdx = dg2dg d(2x-5)dx = 2gd(2x-5)dx = 2(2x-5)·2 = 8x-20.

Find dydx when y=(2x-5)2(3x-4)3. dydx = d(2x-5)2(3x-4)3dx = (2x-5)2 d(3x-4)3dx+ d(2x-5)2dx (3x-4)3 = (2x-5)2 3(3x-4)2· d(3x-4)dx +(3x-4)3 2(2x-5) d(2x-5)dx = 3(2x-5)2 (3x-4)2·3+2 (2x-5) (3x-4)3·2 = (2x-5)(3x-4)2 (9(2x-5)+4(3x-4)) = (2x-5) (3x-4)2 (30x-61).

Find dxmndx. d(xmn)ndx = dgndg dgdx ifg=xmn = ngn-1dxmndx = n(xmn)n-1 dxmndx. On the other hand d(xmn)ndx= dxmdx=mxm-1. So mxm-1=n (xmn)n-1 dxmndx. So dxmndx= mxm-1 n(xmn)n(xmn)-1 . So dxmndx= mxm-1xmn nxm =mnxmnx-1. So dxmndx= mnxmn-1.

Find dydx if y=1+x21-x2. dydx = d1+x21-x2dx = d(1+x2)12(1-x2)12dx = d(1+x21-x2)12dx = 12(1+x21-x2)12-1 d(1+x21-x2)dx= 12(1+x21-x2)-12 d(1+x2)(1-x2)-1dx = 12(1+x21-x2)12 ( (1+x2) d(1-x2)-1dx+ d(1+x2)dx (1-x2)-1 ) = 12(1+x21-x2)12 ( (1+x2)(-1) (1-x2)-2 d(1-x2)dx+ 2x(1-x2)-1 ) = 12(1+x21-x2)12 ( (-1)(1+x2)(-2x) (1-x2)2 +2x1-x2 ) = 12(1+x21-x2)12 ( 2x(1+x2) (1-x2)2 +2x(1-x2)(1-x2)2 ) = 12(1+x21-x2)12 ( 2x(1+x2+1-x2) (1-x2)2 ) = 12 (1-x2)12 (1+x2)12 4x(1-x2)2 = 2x (1+x2)12 (1-x2)32 .

Differentiate x21+x2 with respect to x2.

This is the same problem as: Find dzdp when z=x21+x2 and p=x2. Now dzdx= dzdp dpdx. So dzdp= dzdx dpdx . So dzdp = d(x21+x2)dx d(x2)dx = dx2(1+x2)-1dx dx2dx = dx2(1+x2)-1dx 2x = x2d(1+x2)-1dx+ dx2dx(1+x2)-1 2x = x2(-1) (1+x2)-2 d(1+x2)dx +2x(1+x2)-1 2x = -x2(1+x2)2 2x+2x1+x2 2x = -x2(1+x2)2 +11+x2 = -x2+1+x2 (1+x2)2 = 1(1+x2)2.

Find dydx when x4+y4=4a2x2y2. d(x4+y4)dx= d4a2x2y2dx. So dx4dx+ dy4dx= 4a2dx2y2dx. So 4x3+4y3dydx= 4a2 ( x2dy2dx+ dx2dxy2 ) . So 4x3+4y3dydx = 4a2 ( x22ydydx +2xy2 ) = 4a2x22ydydx +4a22xy2. So 4x3-4a22xy2= 4a2x22ydydx -4y3dydx. So 4x3-4a22xy2= (4a2x22y-4y3) dydx. So 4x3-4a22xy2 4a2x22y-4y3 =dydx. So dydx= x3-2a2xy2 2a2x2y-y3 . All we did is take the derivative of both sides and then solve for ddx.

Find dydx|x=3 when y=(x+1)(x+2).

dydx|x=3 means: find dydx and then plug in x=3. dydx|x=3 = d(x+1)(x+2)dx |x=3 = ( (x+1) d(x+2)dx+ d(x+1)dx (x+2) ) |x=3 = ((x+1)+(x+2)) |x=3=(2x+3) |x=3 = 2·3+3=9.

Find dydx when x=3at1+t3 and y=3at21+t3. dydx= d(xt)dx sincey= 3at21+t3= (3at1+t3) t=xt. So dydx=xdtdx +dxdxt=xdtdx +t. What is dtdx?? Since dxdx=dxdtdtdx, dtdx=dxdxdxdt=1dxdt. So dtdx = 1dxdt= 1d(3at1+t3)dt= 1d(3at)(1+t3)-1dt = 1 3at(-1) (1+t3)-2 d(1+t3)dt +3a(1+t3)-1 = 1 -3at(1+t3)2 ·3t2+3a1+t3 = 1 -9at3+3a(1+t3) (1+t3)2 = (1+t3)2 -9at3+3at3+3a = (1+t3)2 3a-6at3 . So dydx = xdtdx+t = 3at 1+t3 (1+t3)2 3a(1-2t3) +t = t(1+t3) 1-2t3 + t(1-2t3) 1-2t3 = t+t4+t-2t4 1-2t3 = 2t-t4 1-2t3 .

Notes and References

These are a typed copy of Lecture 5 from a series of handwritten lecture notes for the class MATH 221 given on September 15, 2000.

page history