MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 31 July 2014

Lecture 8

Review for exam

We covered:

(1) Exponential function: ex dexdx = ex, ex+y = exey, (ex)y = exy, e0 = 1, e-x = 1ex, ex = 1+x+x22!+ x33!+ x44!+.
(2) The logarithm: lnx

lnx is the function that undoes ex. ln1 = 0, ln(1a) = -lna, dlnxdx = 1x. ln(ab) = ln(a)+ln(b), ln(ab) = blna,
(3) Trig functions: sinx = x- x33!+ x55!- x77!+ x99!-, cosx = 1- x22!+ x44!- x66!+ x88!- x1010!+, tanx = sinxcosx, cotx = 1tanx, secx = 1cosx, cscx = 1sinx, eix = cosx+isinx, sin2x+ cos2x = 1, sin(x+y) = sinxcosy+ cosxsiny, cos(x+y) = cosxcosy- sinxsiny, sin(-x) = -sinx, cos(-x) = cosx, 2 1 45 45 1 2 1 30 60 3 dsinxdx = cosx, dcosxdx = -sinx, dtanxdx = sec2x, dcotxdx = -csc2x, dsecxdx = tanxsecx, dcscxdx = -cotxcscx.
(4) Inverse trig functions: sin-1x is the function that undoes sinx,
cos-1x is the inverse function to cosx,
tan-1x is the inverse function to tanx,
cot-1x is the inverse function to cotx,
sec-1x is the inverse function to secx,
csc-1x is the inverse function to cscx.
dsin-1xdx= 11-x2, dcos-1xdx= -11-x2, dtan-1xdx= 11+x2, dcot-1xdx= -11+x2, dsec-1xdx= 1xx2-1, dcsc-1xdx= -1xx2-1.
(5) Derivatives: f ddx dfdx
(a) dxdx=1,
(b) d(f+g)dx=dfdx+dgdx,
(c) d(cf)dx=cdfdx, if c is a constant,
(d) d(fg)dx=fdgdx+dgdx,
(e) dxndx=nxn-1,
(f) dcdx=0, if c is a constant,
(g) d1dx=0,
(h) dfdx=dfdgdgdx.

Notes and References

These are a typed copy of Lecture 8 from a series of handwritten lecture notes for the class MATH 221 given on September 22, 2000.

page history