MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 4 August 2014

Lecture 9

Leftovers: logax is the inverse function to ax. So logaa7πisin32= 7πisin32 and aloga(7πisin32)= 7πisin32.

Find dydx when y=logx10. So xy=xlogx10= 10. Take the derivative: dxydx= d(elnx)ydx= deylnxdx= eylnx (y1x+dydxlnx). So eylnx ( yx+dydx lnx ) =0. (Since xy=10 and d10dx=0.) Solve for dydx. eylnxdydx lnx = -eylnxyx dydx = - eylnxy xeylnxlnx =-yxlnx= -logx10xlnx.

Find the third derivative of 2x with respect to x. y = 2x dydx = d2xdx= d(eln2)xdx= dexln2dx = exln2(ln2) =(eln2)x ln2=2xln2. d2ydx2 = ddx (dydx)= d2xln2dx =ln2·2xln2= (ln2)22x d3ydx3 = d(d2ydx2)dx= ddx ((ln2)22x)= (ln2)22xln2 = (ln2)32x.

If y=acos(lnx)+bsin(lnx) show that x2d2ydx2+ xdydx+y=0. dydx = a(-sin(lnx)) 1x+bcos(lnx) 1x = -asin(lnx)x-1 +bcos(lnx)x-1. d2ydx2 = -acos(lnx)1x x-1+-asin(lnx) (-1)x-2 = +-bsin(lnx)1x x-1+bcos(lnx) (-1)x-2 = -acos(lnx) +asin(lnx) -bsin(lnx) -bcos(lnx) x2 = 1x2 ( (a-b)sin(lnx) -(a+b)cos(lnx). ) So LHS = x2d2ydx2 +xdydx+y = x21x ( (a-b)sin(lnx)- (a+b)cos(lnx) ) +x ( -asin(lnx)x-1+ bcos(lnx)x-1 ) +acos(lnx) +bsin(lnx) = (a-b)sin(lnx)- (a+b)cos(lnx) -asinlnx +bcoslnx +bsinlnx +acoslnx = 0.

Find dydx when asin(xy)+bcos(xy)=0.

Take the derivative: 0 = acos(xy) (xdydx+1·y)+- bsin(xy) (x(-1)y-2dydx+1·y-1) = acos(xy)xdydx +acos(xy)y +bsin(xy) xy2dydx -bsin(xy) y-1. Solve for dydx. acos(xy)xdydx+ bsin(xy)xy2 dydx=acos(xy) y-bsin(xy)y-1. dydx = acos(xy)y- bsin(xy)y-1 acos(xy)x+bsin (xy)xy2 = acos(xy)y2-b sin(xy) acos(xy)xy+b sin(xy)xy = acos(xy)y3-b sin(xy) acos(xy)xy2+ bsin(xy)x .

Find dydx when y=tan-1(ax)·cot-1(xa). dydx = tan-1(ax) (-11+(xa)2) 1a+11+(ax)2 (-1)ax-2cot-1 (xa) = -tan-1(ax) a+x2a + -cot-1(xa)a x2+a2 = -tan-1(ax)a a2+x2 + -cot-1(xa)a x2+a2 = (-aa2+x2) ( tan-1(ax)+ cot-1(xa) ) . If ax=tanz then xa=cotz and z=tan-1(ax)=cot-1(xa). So dydx = (-aa2+x2) ( tan-1(ax)+ tan-1(ax) ) = -2atan-1(ax) a2+x2 .

Suppose f=c0+c1(x-a) +c2(x-a)2+c3 (x-a)3+. Find the c's. f(a) = c0+0+0+0+=c0, dfdx|x=a = 0+c1+2c2(x-a) +3c3(x-a)2+ |x=a = c1+0+0+=c1, d2fdx2 |x=a = 0+2c2+6c3(x-a) +4·3(x-a)2+ |x=a = 2c2+0+0+=2c2. So c2=12 (d2fdx2|x=a).

Find the function f such that f(10)=2, dfdx|x=10=-3, d2fdx2|x=10=2, d3fdx3|x=10=1and dnfdxn|x=10=0 for all n>3.

Say f=c0+c1(x-10) +c2(x-10)2+c3 (x-10)3+. Then f(10)=c0=2. So c0=2. -3=dfdx |x=10 = 0+c1+2c2 (x-10)+3c3 (x-10)2+ |x=10 = c1+0+0+0+=c1. So c1=-3. 2=d2fdx2 |x=10 = 2c2+3·2c3 (x-10)+4·3 (x-10)2+ |x=10 = 2c2+0+0+0+ =2c2. So c2=1. 1=d3fdx3 |x=10 = 3·2c3+4·3·2c4 (x-10)+5·4·3 (x-10)2c5+ |x=10 = 6c3+0+0+0+. So c3=16. 0=d4fdx4 |x=10 = 4·3·2c4+ 5·4·3·2c5 (x-10)+ |x=10 = 4·3·2c4+0+0+ =4·3·2c4. So c4=0. 0=d5fdx5 |x=10 = 5·4·3·2c5+ 6·5·4·3·2(x-10)c6+ |x=10 = 5·4·3·2c5+0+0+ = 5!c5. So c5=0. Similarly c6=0, c7=0, c8=0, since dnfdxn|x=10=0 for n=6,7,8,. So f = c0+c1(x-10) +c2(x-10)2+ c3(x-10)3+ = 2+-3(x-10)+1· (x-10)2+16 (x-10)3+0+0+ = 2-3x+30+x2-20x+100 +16(x3-30x2+300x-1000) = 16x3-4x2+27x +132-10006. So f=16x3-4x2+27x -6113.

Notes and References

These are a typed copy of Lecture 9 from a series of handwritten lecture notes for the class MATH 221 given on September 27, 2000.

page history