Numbers

Arun Ram
Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu
Version: August 13, 2003

Calculus is the study of
(1) Derivatives
(2) Integrals
(3) Applications of derivatives
(4) Applications of integrals

A derivative is a creature you put a function into, it chews on it, and spits out a new function.
A function takes in a number, chews on it, and spits out a new number.

Derivatives

$\underset{\text { function }}{\text { input }} \longrightarrow \frac{d}{d x} \longrightarrow \begin{gathered}\text { output } \\ \text { function }\end{gathered}$

Functions

$$
\underset{\text { number }}{\text { input }} \longrightarrow f \longrightarrow \begin{gathered}
\text { output } \\
\text { number }
\end{gathered}
$$

The integral is the derivative backwards:
Numbers are at the bottom of the food chain.

At some point humankind wanted to count things and discovered the positive integers,

$$
1,2,3,4,5, \ldots
$$

GREAT for counting something,
BUT what if you don't have anything? How do we talk about nothing, nulla, zilch?
... and so we discovered the nonnegative integers,

$$
0,1,2,3,4,5, \ldots
$$

GREAT for adding,

$$
5+3=8, \quad 0+10=10, \quad 21+37=48
$$

BUT not so great for subtraction,

$$
5-3=2, \quad 2-0=2, \quad 12-34=? ? ?
$$

... and so we discovered the integers

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

GREAT for adding, subtracting and multiplying,

$$
3 \cdot 6=18, \quad-3 \cdot 2=-6, \quad 0 \cdot 7=0
$$

BUT not so great if you only want part of the sausage ...,
... and so we discovered the rational numbers,

$$
\frac{a}{b}, \quad a \text { an integer, } b \text { an integer, } b \neq 0
$$

GREAT for addition, subtraction, multiplication, and division,
BUT not so great for finding $\sqrt{2}=? ? ? ?$,
\ldots and so we discovered the real numbers,
all decimal expansions.

Examples:

$$
\begin{array}{rlrl}
\pi & =3.1415926 \ldots, & & \\
e & =2.71828 \ldots, \\
\sqrt{2} & =1.414 \ldots, & \frac{1}{3} & =.3333 \ldots, \\
10 & =10.0000 \ldots, & \frac{1}{8}=.125=.125000000 \ldots
\end{array}
$$

GREAT for addition, subtraction, multiplication, and division,
BUT not so great for finding $\sqrt{-9}=? ? ? ?$,
\ldots and so we discovered the complex numbers,

$$
a+b i, \quad a \text { a real number, } b \text { a real number, } i=\sqrt{-1}\}
$$

Examples: $\quad 3+\sqrt{2} i, \quad 6=6+0 i, \quad \pi+\sqrt{7} i$,
and

$$
\sqrt{-9}=\sqrt{9(-1)}=\sqrt{9} \sqrt{-1}=3 i
$$

GREAT.
Addition: $\quad(3+4 i)+(7+9 i)=3+7+4 i+9 i=10+13 i$.
Subtraction: $\quad(3+4 i)-(7+9 i)=3-7+4 i-9 i=-4-5 i$.
Multiplication:

$$
\begin{aligned}
(3+4 i)(7+9 i) & =3(7+9 i)+4 i(7+9 i) \\
& =21+27 i+28 i+36 i^{2} \\
& =21+55 i-36 \\
& =-15+55 i .
\end{aligned}
$$

Division:

$$
\begin{aligned}
\frac{3+4 i}{7+9 i} & =\frac{(3+4 i)}{(7+9 i)} \frac{(7-9 i)}{(7-9 i)}=\frac{21-27 i+28 i+36}{49-63 i+63 i+81} \\
& =\frac{57+i}{130}=\frac{57}{130}+\frac{1}{130} i
\end{aligned}
$$

Square Roots: We want $\sqrt{-3+4 i}$ to be some $a+b i$.

$$
\text { If } \quad \sqrt{-3+4 i}=a+b i
$$

then

$$
\begin{aligned}
-3+4 i=(a+b i)^{2} & =a^{2}+a b i+a b i+b^{2} i^{2} \\
& =a^{2}-b^{2}+2 a b i
\end{aligned}
$$

So

$$
a^{2}-b^{2}=-3 \quad \text { and } \quad 2 a b=4
$$

Solve for a and b.

$$
\begin{array}{ll}
b=\frac{4}{2 a}=\frac{2}{a} . & \text { So } \quad a^{2}-\left(\frac{2}{a}\right)^{2}=-3 \\
& \text { So } \quad a^{2}-\frac{4}{a^{2}}=-3 \\
& \text { So } a^{4}-4=-3 a^{2} \\
& \text { So } a^{4}+3 a^{2}-4=0 \\
& \text { So } \quad\left(a^{2}+4\right)\left(a^{2}-1\right)=0
\end{array}
$$

So $a^{2}=-4$ or $a^{2}=1$.
So $a= \pm 1, \quad$ and $b=\frac{2}{ \pm 1}=2$ or -2 .
So $a+b i=1+2 i$ or $a+b i=-1-2 i$.
So $\sqrt{-3+4 i}= \pm(1+2 i)$.
Graphing:

Factoring:

$$
\begin{aligned}
x^{2}+5 & =(x+\sqrt{5} i)(x-\sqrt{5} i) \\
x^{2}+x+1 & =\left(x-\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right)\left(x-\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right)
\end{aligned}
$$

This is REALLY why we like the complex numbers. The fundamental theorem of algebra says that ANY POLYNOMIAL (for example, $x^{12673}+2563 x^{159}+\pi x^{121}+\sqrt{7} x^{23}+9621 \frac{1}{2}$) can be factored completely as

$$
\left(x-u_{1}\right)\left(x-u_{2}\right) \cdots\left(x-u_{n}\right)
$$

where u_{1}, \ldots, u_{n} are complex numbers.

