

Math 541 Modern Algebra A first course in Abstract Algebra Lecturer: <u>Arun Ram</u>

University of Wisconsin-Madison Mathematics Department

Homework 10: Due November 15, 2007

To grade: 4, 9, 12, 16.

- 1. Define G-set, stabilizer and orbit.
- 2. Let *S* be a *G*-set. Show that the orbits partition *S*.
- 3. Let *S* be a *G*-set and let $s \in S$. Show that the stabilizer of *s* is a subgroup of *G*.
- 4. Let S be a G-set and let $s \in S$. Show that there exists a bijection between G/G_s and Gs.
- 5. Let *S* be a *G*-set. Let $s \in S$ and $g \in G$. Show that $G_{gs} = gG_sg^{-1}$.
- 6. Let G be a group. The group G acts on itself by left multiplication. Compute the stabilizer and orbit of each element.
- 7. Define conjugacy class and centralizer and explain the relationship between these and the action of G on itself by conjugation.
- 8. Let G be a group and let H be a subgroup of G. The group G acts on G/H by left multiplication. Compute the stabilizer and orbit of each coset.
- 9. Define center and conjugacy class and prove the class equation.
- 10. The symmetric group S_4 acts on $S = \{1, 2, 3, 4\}$ by permutations. Compute the stablizer and the orbit of each element.
- 11. The dihedral group D_5 acts on the vertices of a pentagon. Compute the stabilizer and the orbit of each vertex.

- 12. The dihedral group D_5 acts on the edges of a pentagon. Compute the stabilizer and the orbit of each edge.
- 13. The cyclic group C_5 acts on the vertices of a pentagon. Compute the stabilizer and the orbit of each vertex.
- 14. The cyclic group C_5 acts on the edges of a pentagon. Compute the stabilizer and the orbit of each edge.
- 15. The symmetric group S_4 acts on the vertices of a tetrahedron. Compute the stabilizer and the orbit of each vertex.
- 16. The symmetric group S_4 acts on the edges of a tetrahedron. Compute the stabilizer and the orbit of each edge.
- 17. The symmetric group S_4 acts on the faces of a tetrahedron. Compute the stabilizer and the orbit of each face.
- 18. Describe how the group $(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/2\mathbb{Z})$ acts on the vertices of a cube. Compute the stabilizer and orbit of each vertex.
- 19. Let *S* be a *G*-set and let $s \in S$. Show that $Card(G) = Card(Gs)Card(G_s)$.