Math 541
 Modern Algebra A first course in Abstract Algebra
 Modern Algebra A first course in Abstract Algebra Lecturer: Arun Ram
 Fall 2007

University of Wisconsin-Madison Mathematics Department

Homework 10: Due November 15, 2007

To grade: 4, 9, 12, 16 .

1. Define G-set, stabilizer and orbit.
2. Let S be a G-set. Show that the orbits partition S.
3. Let S be a G-set and let $s \in S$. Show that the stabilizer of s is a subgroup of G.
4. Let S be a G-set and let $s \in S$. Show that there exists a bijection between G / G_{s} and $G s$.
5. Let S be a G-set. Let $s \in S$ and $g \in G$. Show that $G_{g s}=g G_{s} g^{-1}$.
6. Let G be a group. The group G acts on itself by left multiplication. Compute the stabilizer and orbit of each element.
7. Define conjugacy class and centralizer and explain the relationship between these and the action of G on itself by conjugation.
8. Let G be a group and let H be a subgroup of G. The group G acts on G / H by left multiplication. Compute the stabilizer and orbit of each coset.
9. Define center and conjugacy class and prove the class equation.
10. The symmetric group S_{4} acts on $S=\{1,2,3,4\}$ by permutations. Compute the stablizer and the orbit of each element.
11. The dihedral group D_{5} acts on the vertices of a pentagon. Compute the stabilizer and the orbit of each vertex.
12. The dihedral group D_{5} acts on the edges of a pentagon. Compute the stabilizer and the orbit of each edge.
13. The cyclic group C_{5} acts on the vertices of a pentagon. Compute the stabilizer and the orbit of each vertex.
14. The cyclic group C_{5} acts on the edges of a pentagon. Compute the stabilizer and the orbit of each edge.
15. The symmetric group S_{4} acts on the vertices of a tetrahedron. Compute the stabilizer and the orbit of each vertex.
16. The symmetric group S_{4} acts on the edges of a tetrahedron. Compute the stabilizer and the orbit of each edge.
17. The symmetric group S_{4} acts on the faces of a tetrahedron. Compute the stabilizer and the orbit of each face.
18. Describe how the group $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$ acts on the vertices of a cube. Compute the stabilizer and orbit of each vertex.
19. Let S be a G-set and let $s \in S$. Show that $\operatorname{Card}(G)=\operatorname{Card}(G s) \operatorname{Card}\left(G_{s}\right)$.
