

University of Wisconsin-Madison <u>Mathematics Department</u> Math 541 Modern Algebra A first course in Abstract Algebra Lecturer: <u>Arun Ram</u>

Fall 2007

Homework 14: Due December 13, 2007

To grade: 13, 14, 15, 16.

- 1. Define the following terms.
 - vector space
 - subspace
 - span(S)
 - linear combination
 - linearly independent
 - basis
 - linear transformation
 - kernel (of a linear transformation)
 - image (of a linear transformation)
 - eigenvector with eigenvalue λ
- 2. Define $M_n(\mathbb{F})$ and appropriate operations and prove that it is a ring.
- 3. Define $M_{n \times m}(\mathbb{F})$ and appropriate operations/actions and prove that it is a vector space.
- 4. Define \mathbb{F}^n and prove that it is a vector space.
- 5. Let *V* be a vector space with basis $\{s_1, \dots, s_n\}$. Prove that $V \simeq \mathbb{F}^n$.
- 6. Let V and W be vector spaces and let Hom(V, W) be the set of linear transformations from V to W. Define appropriate operations/actions and prove that Hom(V, W) is a vector space.
- 7. Let V be a vector space. Let End(V) be the set of linear transformations from V to V. Define appropriate operations and prove that End(V) is a ring.
- 8. Let V be a vector space with basis $\{s_1, \dots, s_n\}$. Prove that $\text{End}(V) \simeq M_n(\mathbb{F})$ (as rings).
- 9. Let W be a vector space with basis $\{t_1, \dots, t_m\}$ and let V be a vector space with basis $\{s_1, \dots, s_n\}$. Prove that Hom $(V, W) \simeq M_{n \times m}(\mathbb{F})$ (as vector spaces).

- 10. Let $f: V \rightarrow W$ be a linear transformation. Show that f is injective if and only if ker f = 0.
- 11. Let V be a finite dimensional vector space and let $f : V \rightarrow V$ be a linear transformation. Show that f is invertible if and only if ker f = 0.
- 12. Let V be a finite dimensional vector space and let $f : V \to V$ be a linear transformation. Let $\lambda \in \mathbb{F}$. Define the λ -eigenspace V_{λ} of f. Find a linear transformation $h : V \to V$ such that ker $h = V_{\lambda}$.
- 13. Define the determinant.
 - (a) Prove that the determinant is a monoid homomorphism.
 - (b) Prove that the determinant is a group homomorphism.
 - (c) Prove that the determinant is a ring homomorphism.
- 14. Write a formula for det(A) which corresponds to Laplace expansion down the first column. Prove this formula. Interpret this formula in terms of cosets.
- 15. Let A be an $n \times n$ matrix. Prove that A is invertible if and only if det(A) is invertible.
- 16. Let W be a vector space with basis $\{t_1, \dots t_m\}$ and let V be a vector space with basis $\{s_1, \dots s_n\}$. Let $\varphi_S : V \to \mathbb{F}^n$, $\varphi_T : W \to \mathbb{F}^m$ and $\Phi : \operatorname{Hom}(V, W) \to M_{n \times m}(\mathbb{F})$ be the corresponding isomorphisms (see problem 5 and problem 13). Let $f : V \to V$ be a linear transformation. Prove that

(a) $\varphi_{s}(\ker f)$ is equal to the null space of $\Phi(f)$.

(b) $\varphi_{T}(\text{im } f)$ is equal to the column space of $\Phi(f)$.

If you give proof machine definitions of *null space* and *column space* before beginning these proofs this problem is not difficult but if you don't it is impossible (and probably doesn't make any sense).