

University of Wisconsin-Madison Mathematics Department Modern Algebra A first course in Abstract Algebra Lecturer: <u>Arun Ram</u>

Math 541

Fall 2007

Homework 6: Due October 17, 2007

To grade: 6, 10, 17.

- 1. Define group, subgroup, coset, G/H and normal subgroup.
- 2. Make a list of the groups with ≤ 10 elements their subgroups and the corresponding G/H.
- 3. Show that $5\mathbb{Z}$ is a subgroup of \mathbb{Z} and explicitly determine the cosets of $5\mathbb{Z}$ in \mathbb{Z} .
- 4. Let G be a group, H a subgroup and let $g \in G$ and $h \in H$. Show that gH = ghH.
- 5. Let *G* be a group, *H* a subgroup and let $x, g \in G$. Show that $x \in gH$ if and only if gH = xH.
- 6. Let G be a group and H a subgroup. Show that G/H is a partition of G.
- 7. Let G be a group, H a subgroup and let $g_1, g_2 \in G$. Show that $Card(g_1H) = Card(g_2H)$.
- 8. Let *H* be a subgroup of a group *G*. Show that Card(G) = Card(G/H)Card(H).
- 9. Define integral domain and field of fractions and give examples.
- 10. Let *R* be an integral domain and let \mathbb{F} be its field of fractions. Show that the operation $+ : \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$ is well defined.
- 11. Let *R* be an integral domain and let \mathbb{F} be its field of fractions. Show that the operation $\cdot : \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$ is well defined.
- 12. Let *R* be an integral domain and let \mathbb{F} be its field of fractions. Show that \mathbb{F} is a group.
- 13. Let *R* be an integral domain and let \mathbb{F} be its field of fractions. Define abelian group and show that \mathbb{F} is an abelian group.

- 14. Let *R* be an integral domain and let \mathbb{F} be its field of fractions. Show that \mathbb{F} is a ring.
- 15. Let *R* be an integral domain and let \mathbb{F} be its field of fractions. Show that \mathbb{F} is a field.
- 16. Let *H* be a subgroup of a group *G*. Show that if the operation on *G*/*H* given by $(g_1H)(g_2H) = g_1g_2H$ is well defined then *H* is a normal subgroup of *G*
- 17. Let H be a subgroup of a group G. Show that if H is a normal subgroup of G then the operation on G/H given by

$$(g_1H)(g_2H) = g_1g_2H$$

is well defined.

18. Let *H* be a normal subgroup of a group *G*. Show that G/H with operation given by $(g_1H)(g_2H) = g_1g_2H$

is a group.

- 19. Show that every subgroup of an abelian group is normal.
- 20. Let $f: G \longrightarrow H$ be a group homomorphism. Show that ker f is a subgroup of G.
- 21. Let $f: G \longrightarrow H$ be a group homomorphism. Show that ker f is a normal subgroup of G.
- 22. Let $f: G \longrightarrow H$ be a group homomorphism. Show that im f is a subgroup of H.
- 23. Let $f: G \longrightarrow H$ be a group homomorphism. Show that im f is a normal subgroup of H.