

Math 541 Modern Algebra A first course in Abstract Algebra Lecturer: <u>Arun Ram</u>

<u>University of Wisconsin-Madison</u> <u>Mathematics Department</u>

Homework 8: Due November 1, 2007

To grade: 4, 6, 11.

- 1. Let \mathbb{D} be a division ring. Show that the ideals of \mathbb{D} are $\{0\}$ and \mathbb{D} .
- 2. Let \mathbb{F} be a field. Show that the ideals of $M_n(\mathbb{F})$ are $\{0\}$ and $M_n(\mathbb{F})$.
- 3. Show that each ideal of \mathbb{Z} is generated by one element.
- 4. Show that each ideal of $\mathbb{R}[x]$ is generated by one element.
- 5. Give an example of a ring *R* and an ideal *I* such that *I* is not generated by one element (in any possible way). Be sure to *prove* that *I* is not generated by one element.
- 6. Show that $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \simeq \mathbb{Z}/10\mathbb{Z}$ as groups.
- 7. Show that the product of groups $(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/2\mathbb{Z})$ is *not* isomorphic to the group $\mathbb{Z}/4\mathbb{Z}$.
- 8. Show that $\mathbb{R}[x]/\langle x^2 + 1 \rangle \simeq \mathbb{C}$.
- 9. Let *H* be a subgroup of a group *G*. The *canonical injection* is the map $\iota : H \to G$ given by $\iota : H \longrightarrow G$ $h \mapsto h$

Show that $\iota: H \to G$ is a well defined injective group homomorphism.

10. Let N be a normal subgroup of a group G. The *canonical surjection* or *canonical projection* is the map $\pi : G \to G / N$ given by

$$\begin{array}{rrrr} \pi : & G & \longrightarrow & G/N \\ & g & \mapsto & gN \end{array}$$

Show that $\pi : G \to G / N$ is a well defined surjective group homomorphism and that im $\pi = G / N$ and ker $\pi = N$.

- 11. Using the notations of problem 10, let M be a subgroup of G. Show that
 - 1. $M / N = \{mN \mid m \in M\}$ is a subgroup of G / N.
 - 2. M / N is a normal subgroup of G / N if M is a normal subgroup of G.
 - 3. $M / N = \pi(M)$ and if M contains N Then $\pi^{-1}(\pi(M)) = M$.
 - 4. Conclude that there is a one-to-one correspondence between subgroups of G containing N and subgroups of G/N.
 - 5. Show that this correspondence takes normal subgroups to normal subgroups.
- 12. Let *I* be an ideal of a ring *R*. The *canonical injection* is the map $\iota : I \to R$ given by

$$\iota: I \longrightarrow R$$
$$i \mapsto i$$

Show that $\iota : I \to R$ is a well defined injective ring homomorphism.

13. Let *I* be an ideal of a ring *R*. The *canonical surjection* or *canonical projection* is the map $\pi : R \to R/I$ given by

$$\begin{array}{rccc} \pi: & R & \longrightarrow & R/I \\ & r & \mapsto & r+I \end{array}$$

Show that $\pi : R \to R/I$ is a well defined surjective homomorphism and that im $\pi = R/I$ and ker $\pi = I$.

- 14. Using the notations of problem 13, let J be an ideal of R. Show that
 - 1. $J/I = \{j + I \mid j \in I\}$ is an ideal of R/I.
 - 2. $J/I = \pi(J)$ and if J contains I then $\pi^{-1}(\pi(J)) = J$.
 - 3. Conclude that there is a one-to-one correspondence between ideals of R containing I and ideals of R/I.