Metric and Hilbert Spaces

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 4 November 2014

Lecture 20: Banach fixed point theorem

Let (X,d) be a metric space.

A contraction mapping is a function f:XX such that there exists α(0,1) such that if x,yX then d(f(x),f(y))αd(x,y).

A fixed point of f:XX is an element xX such that f(x)=x.

(Banach fixed point theorem) Let (X,d) be a complete metric space and let f:XX be a contraction mapping. Let xX and let x1,x2, be the sequence x1=f(x), x2=f(f(x)), x3=f(f(f(x))), Then x1,x2, converges and p=limnxn is the unique fixed point of f.

Proof.

To show:
(a) x1,x2, is a Cauchy sequence.
(b) p=limnxn exists.
(c) f(p)=p.
(d) If q is a fixed point of f then q=p.
(a) To show: If ε>0 then there exists N>0 such that if m,n>0 and m>N and n>N then d(xm,xn)<ε.
Assume ε>0.
Let N be the smallest integer in >0 such that αNd(f(x),x)1-α<ε ( soαN< ε(1-α) d(f(x),x) ) . To show: If m,n>0 and m>N and n>N then d(xm,xn)<ε.
Assume m,n>0 and m>N and n>N.
Assume n<m.
To show: d(xm,xn)<ε.
Since d(x2,x1) = d(f2(x),f(x)) αd(f(x),x), d(x3,x2) = d(f3(x),f2(x)) αd(f2(x),f(x)) α2d(f(x),x), d(x4,x3) = d(f4(x),f3(x)) αd(f3(x),f2(x)) α3d(f(x),x), then d(xn,xm) d(xn,xn+1)+ d(xn+1,xd+2)+ + d(xm-1,xm) αnd(f(x),x)+ αn+1d(f(x),x)++ αm-1d(f(x),x) = (αn,αn+1++αm-1) d(f(x),x) αn(1+α+α2+) d(f(x),x) = αn1-α d(f(x),x) < ε. So x1,x2, is a Cauchy sequence in X.
(b) Since (X,d) is complete and x1,x2, is a Cauchy sequence in X then x1,x2, converges in X. So there exists pX with p=limnxn.
(c) To show: f(p)=p.
To show: d(f(p),p)=0.
To show: If ε>0 then d(f(p),p)<ε.
Assume ε>0.
Since limnxn=p, there exists N>0 such that if n>0 and nN then d(xn,p)<ε2.
Then d(f(p),p) d(f(p),xN+1)+ d(xN+1,p) αd(p,xN)+ d(xN+1,p) (sincexN+1=f (xN)) < αε2+ε2 < ε. So d(f(p),p)=0.
So f(p)=p.
(d) To show: If q is a fixed point of f then q=p.
To show: If qX and f(q)=q then q=p.
Assume qX and f(q)=q.
To show: q=p.
To show: d(q,p)=0. d(q,p) = d(f(q),f(p)) (sinceq=f(q)and p=f(p)) αd(q,p) (sincefis contractive). So (1-α)d(q,p)0.
Since (1-α)d(q,p)0 and (1-α)d(q,p)0 then (1-α)d(q,p)=0.
Since α(0,1) then (1-α)0, and so d(q,p)=0.
So p=q.

Notes and References

These are a typed copy of Lecture 20 from a series of handwritten lecture notes for the class Metric and Hilbert Spaces given on August 29, 2014.

page history