Metric and Hilbert Spaces
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last updated: 4 November 2014
Lecture 3 and 4
Hölder, Minkowski, Cauchy-Schwarz and triangle inequalities
Let q ∈ ℝ ≥ 1 .
Let p ∈ ℝ > 1 ∪ { ∞ }
be given by
1 p + 1 q = 1 .
The functions h : ℝ ≥ 0 → ℝ ≥ 0
given by
h ( x ) = x q
1
x
1
y
y = x
y = x 2
y = x 3
y = x 4
are increasing with h ( 1 ) = 1 .
The functions h : ℝ ≥ 0 → ℝ ≥ 0
given by
h ( x ) = x 1 q
1
x
1
y
y = x
y = x 1 2
y = x 1 3
y = x 1 4
are increasing with h ( 1 ) = 1 .
The functions h : ℝ > 0 → ℝ ≥ 0
given by
h ( x ) = x - 1 q
1
x
1
y
y = 1 x
y = x - 1 2
y = x - 1 3
are decreasing with h ( 1 ) = 1 .
Thus the functions g : ℝ ≥ 0 → ℝ
given by g ( x ) = x - 1 q - 1
are decreasing with g ( 1 ) = 0 . So
x - 1 q - 1 ≤ 0
for x ∈ ℝ ≥ 1 .
If f : ℝ > 0 → ℝ
is given by
f ( x ) = x 1 p
- 1 p x
then d f d x = 1 p x 1 p - 1 - 1 p = 1 p ( x - 1 q - 1 )
and so f is decreasing for x ∈ ℝ > 1
and f ( 1 ) = 1 - 1 p = 1 q .
So
x 1 p - 1 p x ≤
1 q for x ∈
ℝ ≥ 1 .
Let a , b ∈ ℝ > 0 with
a ≥ b and let x = a b .
Then
1 q ≥
( a b ) 1 p - 1 p
( a b ) = 1 b
( a 1 p b - 1 p + 1 - 1 p a )
= 1 b ( a 1 p b 1 q - 1 p a ) .
So
1 p a + 1 q b ≥
a 1 p b 1 q
for a , b ∈ ℝ > 0 .
Let x = ( x 1 , … , x n ) ∈ ℝ n
and y = ( y 1 , … , y n ) ∈ ℝ n .
Then
| x i y i |
‖ x ‖ p ‖ y ‖ q
≤ 1 p
(
| x i |
‖ x ‖ p
)
p
+ 1 q
(
| y i |
‖ y ‖ q
)
q
.
So
∑ i = 1 n
| x i y i |
‖ x ‖ p ‖ y ‖ q
≤
∑ i = 1 n
(
≤ 1 p
(
| x i |
‖ x ‖ p
)
p
+ 1 q
(
| y i |
‖ y ‖ q
)
q
)
=
1 p + 1 q = 1 .
So
∑ i = 1 n
| x i y i |
≤
‖ x ‖ p ‖ y ‖ q .
So
| ∑ i = 1 n x i y i | ≤
∑ i = 1 n | x i y i | ≤
‖ x ‖ p ‖ y ‖ q .
Using
| x i + y i | ≤
| x i | + | y i |
and p - 1 = p ( 1 - 1 p )
= p 1 q = p q
and
‖
| x 1 + y 1 | p q
, … ,
| x n + y n | p q
‖
q
=
( ∑ i = 1 n ( ( x i + y i ) p q ) q ) 1 q
=
( ∑ i = 1 n | x i + y i | p ) 1 p · p q
=
( ‖ x + y ‖ p ) p q ,
gives
| x + y | p p
=
∑ i = 1 n
| x i + y i | p
= ∑ i = 1 n
| x i + y i |
| x i + y i | p - 1
≤
∑ i = 1 n
( | x i | + | y i | )
| x i + y i | p q
=
∑ i = 1 n | x i |
| x i + y i | p q +
∑ i = 1 n | y i |
| x i + y i | p q
≤
‖ x ‖ p
‖
(
| x 1 + y 1 | p q , … ,
| x n + y n | p q
)
‖
q
+
‖ y ‖ p
‖
(
| x 1 + y 1 | p q , … ,
| x n + y n | p q
)
‖
q
=
‖ x ‖ p
‖ x + y ‖ p p q +
‖ y ‖ p
‖ x + y ‖ p p q
=
(
‖ x ‖ p +
‖ y ‖ p
)
‖ x + y ‖ p p - 1 .
Dividing both sides by ‖ x + y ‖ p p - 1 ,
then
‖ x + y ‖ p ≤
‖ x ‖ p +
‖ y ‖ p .
Let x = ( x 1 , … , x n ) ∈ ℝ n .
For p ∈ ℝ ≥ 1 define
‖ x ‖ p =
(
| x 1 | p + ⋯ +
| x n | p
)
1 p
.
For x = ( x 1 , … , x n )
in ℝ n define
| x | = | x | 2
= ( | x 1 | 2 + ⋯ + | x n | 2 ) 1 2
= x 1 2 + ⋯ + x n 2
and, for x = ( x 1 , … , x n )
and y = ( y 1 , … , y n ) in
ℝ n define
〈 x , y 〉 =
x 1 y 1 + ⋯ + x n y n .
Let x , y ∈ ℝ n with
x = ( x 1 , … , x n )
and y = ( y 1 , … , y n ) .
If p ∈ ℝ > 1 and q is given by
1 p + 1 q = 1 then
| ∑ i = 1 n x i y i | ≤
‖ x ‖ p ‖ y ‖ q
and
‖ x + y ‖ p ≤
‖ x ‖ p + ‖ y ‖ p .
Let ,x y ∈ ℝ n with
x = ( x 1 , … , x n )
and y = ( y 1 , … , y n ) .
Then
| 〈 x , y 〉 | =
| ∑ i = 1 n x i y i |
≤ | x | | y |
and | x + y | ≤
| x | + | y | .
Special case: Let x , y ∈ ℝ . Then
| x y | = | x | | y |
and | x + y | ≤
| x | + | y | .
Notes and References
These are a typed copy of Lecture 3 and 4 from a series of handwritten lecture notes for the class Metric and Hilbert Spaces given on July 31 and August 1, 2014.
page history