MAST30026 Metric and Hilbert spaces

Assignment 1 (10 questions)

due Wednesday Sep 10 at 10am

1. Let A and B be bounded subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that

$$\operatorname{diam}(A \cup B) \le \operatorname{diam}(A) + \operatorname{diam}(B).$$

What can you say if A and B are disjoint?

2. Let $X = C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$. The supremum metric $d_{\infty} : X \times X \to \mathbb{R}_{\geq 0}$ and the L^1 metric $d_1 : X \times X \to \mathbb{R}_{\geq 0}$ are defined by

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| \mid x \in [0,1]\} \text{ and} \\ d_{1}(f,g) = \int_{0}^{1} |f(x) - g(x)| \, dx.$$

Consider the sequence $\{f_1, f_2, f_3, \ldots\}$ in X where $f_n(x) = nx^n(1-x)$ for $0 \le x \le 1$.

- (a) Determine whether $\{f_n\}$ converges in (X, d_1) .
- (b) Determine whether $\{f_n\}$ converges in (X, d_{∞}) .

3. Let X and Y be topological spaces. Let $A \subseteq X$ and $B \subseteq Y$. Show that $\overline{A} \times \overline{B} = \overline{A \times B}$.

4. Let (X, d) be a metric space and let A be a non-empty subset of X. Recall that for each $x \in X$, the distance from x to A is

$$d(x, A) = \inf\{d(x, a) \mid a \in A\}.$$

- (a) Prove that $\overline{A} = \{x \in X \mid d(x, A) = 0\}.$
- (b) Prove that $|d(x, A) d(y, A)| \le d(x, y)$ for all $x, y \in X$. [Hint: first show that $d(x, A) \le d(x, y) + d(y, A)$.]
- (c) Deduce the function $f: X \to \mathbb{R}$ defined by f(x) = d(x, A) is continuous.
- (d) Show that if $x \notin \overline{A}$ then $U = \{y \in X \mid d(y, A) < d(x, A)\}$ is an open set in X such that $\overline{A} \subseteq U$ and $x \notin U$.

5. Determine whether the following sequences of functions converge uniformly.

(a) $f_n(x) = e^{-nx^2}$, $x \in [0, 1]$; (b) $g_n(x) = e^{-x^2/n}$, $x \in [0, 1]$. (c) $g_n(x) = e^{-x^2/n}$, $x \in \mathbb{R}$.

6. Let X be the set of all real sequences with *finitely many non-zero terms* with the supremum metric: if $\mathbf{x} = (x_i)$ and $\mathbf{y} = (y_i)$ then $d(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| \mid i \in \mathbb{Z}_{>0}\}$.

For each $n \in \mathbb{N}$, let $\mathbf{x}^n = (1, 1/2, 1/3, \dots, 1/n, 0, 0, \dots)$.

- (a) Show that $\{\mathbf{x}^n\}$ is a Cauchy sequence in X.
- (b) Show that $\{\mathbf{x}^n\}$ does not converge to a point in X. (So X is not complete.)

7. Let X be a nonempty set and let (Y, d) be a complete metric space. Let $f: X \to Y$ be an injective function and define

$$d_f(x,y) = d(f(x), f(y)), \quad \text{for } x, y \in X.$$

- (a) Show that d_f is a metric on X.
- (b) Show that (X, d_f) is a complete metric space if f(X) is a closed subset of Y.
- 8. Let $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be given by

$$f(x) = \frac{2}{2+x}$$

- (a) Show that f defines a contraction mapping $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$.
- (b) Fix $x_0 \ge 0$ and $x_{n+1} = f(x_n)$ for all $n \ge 0$. Show that the sequence $\{x_n\}$ converges and find its limit with respect to the usual metric on \mathbb{R} .

9. Let X be a connected topological space. Let $f: X \to \mathbb{R}$ be continuous with $f(X) \subseteq \mathbb{Q}$. Show that f is a constant function.

10. Show that $X = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$ is not homeomorphic to \mathbb{R} .