MAST30026 Metric and Hilbert spaces

Assignment 1 (10 questions)

due Wednesday Sep 10 at 10am

1. Let A and B be bounded subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that

$$
\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A)+\operatorname{diam}(B)
$$

What can you say if A and B are disjoint?
2. Let $X=C[0,1]=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$. The supremum metric $d_{\infty}: X \times X \rightarrow \mathbb{R}_{\geq 0}$ and the L^{1} metric $d_{1}: X \times X \rightarrow \mathbb{R}_{\geq 0}$ are defined by

$$
\begin{aligned}
d_{\infty}(f, g) & =\sup \{|f(x)-g(x)| \mid x \in[0,1]\} \quad \text { and } \\
d_{1}(f, g) & =\int_{0}^{1}|f(x)-g(x)| d x .
\end{aligned}
$$

Consider the sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ in X where $f_{n}(x)=n x^{n}(1-x)$ for $0 \leq x \leq 1$.
(a) Determine whether $\left\{f_{n}\right\}$ converges in $\left(X, d_{1}\right)$.
(b) Determine whether $\left\{f_{n}\right\}$ converges in $\left(X, d_{\infty}\right)$.
3. Let X and Y be topological spaces. Let $A \subseteq X$ and $B \subseteq Y$. Show that

$$
\bar{A} \times \bar{B}=\overline{A \times B} .
$$

4. Let (X, d) be a metric space and let A be a non-empty subset of X. Recall that for each $x \in X$, the distance from x to A is

$$
d(x, A)=\inf \{d(x, a) \mid a \in A\}
$$

(a) Prove that $\bar{A}=\{x \in X \mid d(x, A)=0\}$.
(b) Prove that $|d(x, A)-d(y, A)| \leq d(x, y)$ for all $x, y \in X$. [Hint: first show that $d(x, A) \leq d(x, y)+d(y, A)$.]
(c) Deduce the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=d(x, A)$ is continuous.
(d) Show that if $x \notin \bar{A}$ then $U=\{y \in X \mid d(y, A)<d(x, A)\}$ is an open set in X such that $\bar{A} \subseteq U$ and $x \notin U$.
5. Determine whether the following sequences of functions converge uniformly.
(a) $f_{n}(x)=e^{-n x^{2}}, \quad x \in[0,1]$;
(b) $g_{n}(x)=e^{-x^{2} / n}, \quad x \in[0,1]$.
(c) $g_{n}(x)=e^{-x^{2} / n}, \quad x \in \mathbb{R}$.
6. Let X be the set of all real sequences with finitely many non-zero terms with the supremum metric: if $\mathbf{x}=\left(x_{i}\right)$ and $\mathbf{y}=\left(y_{i}\right)$ then $d(\mathbf{x}, \mathbf{y})=\sup \left\{\mid x_{i}-\right.$ $\left.y_{i}| | i \in \mathbb{Z}_{>0}\right\}$.
For each $n \in \mathbb{N}$, let $\mathbf{x}^{n}=(1,1 / 2,1 / 3, \ldots, 1 / n, 0,0, \ldots)$.
(a) Show that $\left\{\mathbf{x}^{n}\right\}$ is a Cauchy sequence in X.
(b) Show that $\left\{\mathbf{x}^{n}\right\}$ does not converge to a point in X. (So X is not complete.)
7. Let X be a nonempty set and let (Y, d) be a complete metric space. Let $f: X \rightarrow Y$ be an injective function and define

$$
d_{f}(x, y)=d(f(x), f(y)), \quad \text { for } x, y \in X
$$

(a) Show that d_{f} is a metric on X.
(b) Show that $\left(X, d_{f}\right)$ is a complete metric space if $f(X)$ is a closed subset of Y.
8. Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be given by

$$
f(x)=\frac{2}{2+x} .
$$

(a) Show that f defines a contraction mapping $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$.
(b) Fix $x_{0} \geq 0$ and $x_{n+1}=f\left(x_{n}\right)$ for all $n \geq 0$. Show that the sequence $\left\{x_{n}\right\}$ converges and find its limit with respect to the usual metric on \mathbb{R}.
9. Let X be a connected topological space. Let $f: X \rightarrow \mathbb{R}$ be continuous with $f(X) \subseteq \mathbb{Q}$. Show that f is a constant function.
10. Show that $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$ is not homeomorphic to \mathbb{R}.

