Metric and Hilbert spaces

Assignment 2

Due Wednesday Oct 15 at 10am

1. Let

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\} \quad \text { and } \\
& B=\left\{(x, y) \in \mathbb{R}^{2}:(x-2)^{2}+y^{2}<1\right\} .
\end{aligned}
$$

Determine, with proof, whether $X=A \cup B, Y=\bar{A} \cup \bar{B}$ and $Z=\bar{A} \cup B$ are connected subsets of \mathbb{R}^{2} with the usual topology.
2. Let X and Y be topological spaces and assume that Y is Hausdorff. Let $f: X \rightarrow Y$ and $g: X \rightarrow Y$ be continuous functions.
(a) Show that the set $\{x \in X \mid f(x)=g(x)\}$ is a closed subset of X.
(b) Show that if $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are continuous then

$$
f-g \quad \text { is continuous. }
$$

(c) Show that if $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are continuous then

$$
\{x \in X \mid f(x)<g(x)\} \quad \text { is open. }
$$

3. Let X be a complete normed vector space over \mathbb{R}. A sphere in X is a set

$$
S(a, r)=\{x \in X: d(x, a)=\|x-a\|=r\}, \quad \text { for } a \in X \text { and } r \in \mathbb{R}_{>0} .
$$

(a) Show that each sphere in X is nowhere dense.
(b) Show that there is no sequence of spheres $\left\{S_{n}\right\}$ in X whose union is X.
(c) Give a geometric interpretation of the result in (b) when $X=\mathbb{R}^{2}$ with the Euclidean norm.
(d) Show that the result of (b) does not hold in every complete metric space X.
4. Prove that if X and Y are path connected then $X \times Y$ is also path connected.
5. Let $p \in \mathbb{R}_{>1}$ and define $q \in \mathbb{R}_{>1}$ by $\frac{1}{p}+\frac{1}{q}=1$.
(a) Define the normed vector space ℓ^{p}.
(b) Show that ℓ^{p} is a Banach space.
(c) Prove that the dual of ℓ^{p} is ℓ^{q}.
6. Let $X=C^{1}[0,1]$ and $Y=C[0,1]$ so that functions in X are continuously differentiable and functions in Y are continuous:

$$
\begin{array}{lll}
Y=C[0,1], & \text { with norm given by } & \|f\|=\sup \{|f(t)| \mid t \in[0,1]\}, \text { and } \\
X=C^{1}[0,1], & \text { with norm given by } & \|f\|_{0}=\|f\|+\left\|f^{\prime}\right\|,
\end{array}
$$

where $f^{\prime}=\frac{d f}{d t}$. Let $D: X \rightarrow Y$ be the differentiation operator $D f=\frac{d f}{d t}$.
(1) Show that $D:\left(X,\|\cdot\|_{0}\right) \rightarrow(Y,\|\cdot\|)$ is a bounded linear operator with $\|D\|=1$.
(2) Show that $D:(X,\|\cdot\|) \rightarrow(Y,\|\cdot\|)$ is an unbounded linear operator.
(Hint: Consider the sequence of elements t^{n} in X).
7. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a bounded sequence of complex numbers. Define an operator $T: l^{2} \rightarrow l^{2}$ by;

$$
T\left(b_{1}, b_{2}, \ldots\right)=\left(0, a_{1} b_{1}, a_{2} b_{2}, \ldots\right) .
$$

(1) Show that T is a bounded linear operator and find $\|T\|$.
(2) Compute the adjoint operator T^{*}.
(3) Show that if $T \neq 0$ then $T^{*} T \neq T T^{*}$.
(4) Find the eigenvalues of T^{*}.
8. Let $\left[a_{i j}\right]$ be an infinite complex matrix, $i, j=1,2, \ldots$, such that if $j \in \mathbb{Z}_{>0}$ then

$$
c_{j}=\sum_{i}\left|a_{i j}\right| \quad \text { converges, } \quad \text { and } \quad c=\sup \left\{c_{1}, c_{2}, \ldots\right\}<\infty .
$$

Show that the operator $T: \ell^{1} \rightarrow \ell^{1}$ defined by

$$
T\left(b_{1}, b_{2}, \ldots\right)=\left(\sum_{j} a_{1 j} b_{j}, \sum_{j} a_{2 j} b_{j}, \ldots\right)
$$

is a bounded linear operator and that $\|T\|=c$.

