Metric and Hilbert spaces

Assignment 2

Due Wednesday Oct 15 at 10am

1. Let

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \text{ and } B = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + y^2 < 1\}.$$

Determine, with proof, whether $X = A \cup B$, $Y = \overline{A} \cup \overline{B}$ and $Z = \overline{A} \cup B$ are connected subsets of \mathbb{R}^2 with the usual topology.

2. Let X and Y be topological spaces and assume that Y is Hausdorff. Let
$$f: X \to Y$$
 and $g: X \to Y$ be continuous functions.

(a) Show that the set $\{x \in X \mid f(x) = g(x)\}$ is a closed subset of X.

(b) Show that if $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous then

f-g is continuous.

(c) Show that if $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous then

 $\{x \in X \mid f(x) < g(x)\}$ is open.

3. Let X be a complete normed vector space over \mathbb{R} . A **sphere** in X is a set

 $S(a,r) = \{ x \in X : d(x,a) = \|x - a\| = r \}, \quad \text{for } a \in X \text{ and } r \in \mathbb{R}_{>0}.$

- (a) Show that each sphere in X is nowhere dense.
- (b) Show that there is no sequence of spheres $\{S_n\}$ in X whose union is X.
- (c) Give a geometric interpretation of the result in (b) when $X = \mathbb{R}^2$ with the Euclidean norm.
- (d) Show that the result of (b) does not hold in every complete metric space X.

4. Prove that if X and Y are path connected then $X \times Y$ is also path connected.

5. Let $p \in \mathbb{R}_{>1}$ and define $q \in \mathbb{R}_{>1}$ by $\frac{1}{p} + \frac{1}{q} = 1$.

- (a) Define the normed vector space ℓ^p .
- (b) Show that ℓ^p is a Banach space.
- (c) Prove that the dual of ℓ^p is ℓ^q .

6. Let $X = C^{1}[0, 1]$ and Y = C[0, 1] so that functions in X are continuously differentiable and functions in Y are continuous:

 $\begin{array}{ll} Y = C[0,1], & \text{ with norm given by } \\ X = C^1[0,1], & \text{ with norm given by } \end{array} & \|f\| = \sup\{|f(t)| \mid t \in [0,1]\}, \text{ and } \\ \|f\|_0 = \|f\| + \|f'\|, \end{array}$

where $f' = \frac{df}{dt}$. Let $D: X \to Y$ be the differentiation operator $Df = \frac{df}{dt}$.

- (1) Show that $D: (X, \|\cdot\|_0) \to (Y, \|\cdot\|)$ is a bounded linear operator with $\|D\| = 1$.
- (2) Show that $D: (X, \|\cdot\|) \to (Y, \|\cdot\|)$ is an unbounded linear operator. (*Hint:* Consider the sequence of elements t^n in X).

 $\mathbf{2}$

7. Let $\{a_1, a_2, \dots\}$ be a bounded sequence of complex numbers. Define an operator $T: l^2 \to l^2$ by;

$$T(b_1, b_2, \dots) = (0, a_1b_1, a_2b_2, \dots).$$

- (1) Show that T is a bounded linear operator and find ||T||.
- (2) Compute the adjoint operator T^* .
- (3) Show that if $T \neq 0$ then $T^*T \neq TT^*$.
- (4) Find the eigenvalues of T^* .

8. Let $[a_{ij}]$ be an infinite complex matrix, $i, j = 1, 2, \ldots$, such that if $j \in \mathbb{Z}_{>0}$ then

$$c_j = \sum_i |a_{ij}|$$
 converges, and $c = \sup\{c_1, c_2, \ldots\} < \infty.$

Show that the operator $T: \ell^1 \to \ell^1$ defined by

$$T(b_1, b_2, \dots) = \left(\sum_j a_{1j} b_j, \sum_j a_{2j} b_j, \dots\right)$$

is a bounded linear operator and that ||T|| = c.