Tutorial Sheet 1

MAST30026 Metric and Hilbert Spaces Semester II 2015 Lecturer: Arun Ram

- (1) Define the necessary terms and prove the following statement: A function $f: X \to Y$ is invertible if and only if f is a bijection.
- (2) Let S be a set. Define the necessary terms and carefully state and prove a result that establishes that the data of an equivalence relation on S and a partition of S are equivalent data.
- (3) Define the necessary terms and establish (with proof) the following:
 - (a) Show that if S is a poset and E is a subset of S and a greatest lower bound of E exists then it is unique.
 - (b) True or false: If S is a poset and E is a subset of S then a greatest lower bound of E exists.
 - (c) True or false: If S is a poset and E is a subset of S and a minimal element of E exists then it is unique.
 - (d) True or false: If S is a poset and E is a subset of S then a minimal element of E exists.
 - (e) True or false: If S is a poset and E is a subset of S then a largest element of E exists.
 - (f) True or false: If S is a poset and E is a subset of S and a largest element of E exists then it is unique.
- (4) Define the necessary terms and establish (with proof) the following:
 - (a) Show that if S is a right filtered poset and a is a maximal element of S then a is the largest element of S.
 - (b) Show that every well ordered set is totally ordered.
 - (c) Show that there exist totally ordered sets that are not well ordered.
 - (d) Show that if S is a lattice then the intersection of two intervals is an interval.
 - (e) Give an example of a poset X such that the collection $\mathcal{T} = \{\text{unions of open intervals}\}$ is not a topology.

- (f) Show that if X is the poset $X = \mathbb{R}$ then the collection $\mathcal{T} = \{\text{unions of open intervals}\}$ is the standard topology on \mathbb{R} .
- (5) Let \mathbb{F} be a field. Define the necessary terms (including field) and establish (with proof) the following:
 - (a) If $a \in \mathbb{F}$ then $a \cdot 0 = 0$.
 - (b) If $a \in \mathbb{F}$ then -(-a) = a.
 - (c) If $a \in \mathbb{F}$ and $a \neq 0$ then $(a^{-1})^{-1} = a$.
 - (d) If $a \in \mathbb{F}$ then a(-1) = -a.
 - (e) If $a, b \in \mathbb{F}$ then (-a)b = -ab.
 - (f) If $a, b \in \mathbb{F}$ then (-a)(-b) = ab.
- (6) Let F be an ordered field. Define the necessary terms (including field) and establish (with proof) the following:
 - (a) If $a \in \mathbb{F}$ and a > 0 then -a < 0.
 - (b) If $a \in \mathbb{F}$ and $a \neq 0$ then $a^2 > 0$.
 - (c) $1 \ge 0$.
 - (d) If $a \in \mathbb{F}$ and a > 0 then $a^{-1} > 0$.
 - (e) If $a, b \in \mathbb{F}$ and $a \ge 0$ and $b \ge 0$ then $a + b \ge 0$.
 - (f) If $a, b \in \mathbb{F}$ and 0 < a < b then $b^{-1} < a^{-1}$.
- (7) Define $\mathbb{R}_{\geq 0}$ and establish (with proof) the following
 - (a) If $x, y, z \in \mathbb{R}_{\geq 0}$ then (x + y) + z = x + (y + z).
 - (b) If $x \in \mathbb{R}_{\geq 0}$ then 0 + x = x and x + 0 = x.
 - (c) If $x, y \in \mathbb{R}_{\geq 0}$ then x + y = y + x.
 - (d) If $x, y, z \in \mathbb{R}_{\geq 0}$ then (xy)z = x(yz).
 - (e) If $x \in \mathbb{R}_{\geq 0}$ then $0 \cdot x = x$ and $x \cdot 1 = x$.
 - (f) If $x \in \mathbb{R}_{\geq 0}$ and $x \neq 0$ then there exists $x^{-1} \in \mathbb{R}_{\geq 0}$ such that $x \cdot x^{-1} = 1$ and $x^{-1} \cdot x = 1$.
 - (g) If $x, y \in \mathbb{R}_{\geq 0}$ then xy = yx.
 - (h) If $x, y, z \in \mathbb{R}_{\geq 0}$ then x(y+z) = xy + xz.
 - (i) If $x, y, z \in \mathbb{R}_{\geq 0}$ and $x \leq y$ then $x + z \leq y + z$.
 - (j) If $x, y \in \mathbb{R}_{\geq 0}$ then $xy \in \mathbb{R}_{\geq 0}$.
- (8) Let $n \in \mathbb{Z}_{>0}$. Define the necessary terms and establish the following:
 - (a) The function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is continuous.
 - (b) The function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is bijective.

(c) The function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ satisfies

if $x, y \in \mathbb{R}_{\geq 0}$ and x < y then $x^n < y^n$.

- (d) The inverse function $x^{\frac{1}{n}} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ to the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is continuous.
- (9) Show that the functions

Determine (with proof) which of these functions are uniformly continuous.

(10) Let $x, y \in \mathbb{R}^n$. Define the necessary terms (including |x| and $\langle x, y \rangle$) and establish the following:

(a) (Lagrange's identity)
$$|x|^2 \cdot |y|^2 - \langle x, y \rangle^2 = \frac{1}{2} \sum_{i,j=1}^n (x_i y_j - x_j y_i)^2.$$

- (b) (Cauchy-Schwarz inequality) $\langle x, y \rangle \leq |x| \cdot |y|$.
- (c) (triangle inequality) $|x + y| \leq |x| + |y|$.
- (11) Let (V, \langle, \rangle) be a positive definite inner product space. Define the necessary terms (including positive definite inner product space and ||x||) and establish the following:
 - (a) (Cauchy-Schwarz inequality) If $x, y \in V$ then $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.
 - (b) (triangle inequality) If $x, y \in V$ then $||x + y|| \leq ||x|| + ||y||$.
- (12) Let $q \in \mathbb{R}_{\geq 1}$ and let $p \in \mathbb{R}_{>1} \cup \{\infty\}$ be given by $\frac{1}{p} + \frac{1}{q} = 1$. Define the necessary terms and establish the following:
 - (a) (Young's inequality) If $a, b \in \mathbb{R}_{>0}$ then $a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{1}{p} a + \frac{1}{q} b$.
 - (b) (Hölder inequality for \mathbb{R}^n) If $x, y \in \mathbb{R}^n$ then $|\langle x, y \rangle| \leq ||x||_p ||y||_q$.
 - (c) (Minkowski inequality for \mathbb{R}^n) If $x, y \in \mathbb{R}^n$ then $||x + y||_p \leq ||x||_p + ||y||_p$.
 - (d) (Hölder inequality) If $x \in \ell^p$ and $y \in \ell^q$ then $|\langle x, y \rangle| \leq ||x||_p ||y||_q$.
 - (e) (Minkowski inequality) If $x \in \ell^p$ and $y \in \ell^q$ then $||x + y||_p \leq ||x||_p + ||y||_p$.