# Tutorial Sheet 1 

MAST30026 Metric and Hilbert Spaces<br>Semester II 2015<br>Lecturer: Arun Ram

(1) Define the necessary terms and prove the following statement:

A function $f: X \rightarrow Y$ is invertible if and only if $f$ is a bijection.
(2) Let $S$ be a set. Define the necessary terms and carefully state and prove a result that establishes that the data of an equivalence relation on $S$ and a partition of $S$ are equivalent data.
(3) Define the necessary terms and establish (with proof) the following:
(a) Show that if $S$ is a poset and $E$ is a subset of $S$ and a greatest lower bound of $E$ exists then it is unique.
(b) True or false: If $S$ is a poset and $E$ is a subset of $S$ then a greatest lower bound of $E$ exists.
(c) True or false: If $S$ is a poset and $E$ is a subset of $S$ and a minimal element of $E$ exists then it is unique.
(d) True or false: If $S$ is a poset and $E$ is a subset of $S$ then a minimal element of $E$ exists.
(e) True or false: If $S$ is a poset and $E$ is a subset of $S$ then a largest element of $E$ exists.
(f) True or false: If $S$ is a poset and $E$ is a subset of $S$ and a largest element of $E$ exists then it is unique.
(4) Define the necessary terms and establish (with proof) the following:
(a) Show that if $S$ is a right filtered poset and $a$ is a maximal element of $S$ then $a$ is the largest element of $S$.
(b) Show that every well ordered set is totally ordered.
(c) Show that there exist totally ordered sets that are not well ordered.
(d) Show that if $S$ is a lattice then the intersection of two intervals is an interval.
(e) Give an example of a poset $X$ such that the collection $\mathcal{T}=\{$ unions of open intervals $\}$ is not a topology.
(f) Show that if $X$ is the poset $X=\mathbb{R}$ then the collection $\mathcal{T}=\{$ unions of open intervals $\}$ is the standard topology on $\mathbb{R}$.
(5) Let $\mathbb{F}$ be a field. Define the necessary terms (including field) and establish (with proof) the following:
(a) If $a \in \mathbb{F}$ then $a \cdot 0=0$.
(b) If $a \in \mathbb{F}$ then $-(-a)=a$.
(c) If $a \in \mathbb{F}$ and $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$.
(d) If $a \in \mathbb{F}$ then $a(-1)=-a$.
(e) If $a, b \in \mathbb{F}$ then $(-a) b=-a b$.
(f) If $a, b \in \mathbb{F}$ then $(-a)(-b)=a b$.
(6) Let $\mathbb{F}$ be an ordered field. Define the necessary terms (including field) and establish (with proof) the following:
(a) If $a \in \mathbb{F}$ and $a>0$ then $-a<0$.
(b) If $a \in \mathbb{F}$ and $a \neq 0$ then $a^{2}>0$.
(c) $1 \geqslant 0$.
(d) If $a \in \mathbb{F}$ and $a>0$ then $a^{-1}>0$.
(e) If $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$ then $a+b \geqslant 0$.
(f) If $a, b \in \mathbb{F}$ and $0<a<b$ then $b^{-1}<a^{-1}$.
(7) Define $\mathbb{R}_{\geqslant 0}$ and establish (with proof) the following
(a) If $x, y, z \in \mathbb{R}_{\geqslant 0}$ then $(x+y)+z=x+(y+z)$.
(b) If $x \in \mathbb{R}_{\geqslant 0}$ then $0+x=x$ and $x+0=x$.
(c) If $x, y \in \mathbb{R}_{\geqslant 0}$ then $x+y=y+x$.
(d) If $x, y, z \in \mathbb{R}_{\geqslant 0}$ then $(x y) z=x(y z)$.
(e) If $x \in \mathbb{R}_{\geqslant 0}$ then $0 \cdot x=x$ and $x \cdot 1=x$.
(f) If $x \in \mathbb{R}_{\geqslant 0}$ and $x \neq 0$ then there exists $x^{-1} \in \mathbb{R}_{\geqslant 0}$ such that $x \cdot x^{-1}=1$ and $x^{-1} \cdot x=1$.
(g) If $x, y \in \mathbb{R}_{\geqslant 0}$ then $x y=y x$.
(h) If $x, y, z \in \mathbb{R}_{\geqslant 0}$ then $x(y+z)=x y+x z$.
(i) If $x, y, z \in \mathbb{R}_{\geqslant 0}$ and $x \leqslant y$ then $x+z \leqslant y+z$.
(j) If $x, y \in \mathbb{R}_{\geqslant 0}$ then $x y \in \mathbb{R}_{\geqslant 0}$.
(8) Let $n \in \mathbb{Z}_{>0}$. Define the necessary terms and establish the following:
(a) The function $x^{n}: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ is continuous.
(b) The function $x^{n}: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ is bijective.
(c) The function $x^{n}: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ satisfies

$$
\text { if } x, y \in \mathbb{R}_{\geqslant 0} \text { and } x<y \text { then } x^{n}<y^{n}
$$

(d) The inverse function $x^{\frac{1}{n}}: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ to the function $x^{n}: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ is continuous.
(9) Show that the functions

$$
\left.\begin{array}{rlc}
\mathbb{R} \times \mathbb{R} & \rightarrow & \mathbb{R} \\
(x, y) & \mapsto x & \mapsto x+y
\end{array} \text { and } \begin{array}{ccc}
\mathbb{R} & \rightarrow & \mathbb{R} \\
x & \mapsto & -x
\end{array} \text { and } \begin{array}{rl}
\mathbb{R} \times \mathbb{R} & \rightarrow \\
(x, y) & \mapsto
\end{array}\right] \quad \text { are continuous. }
$$

Determine (with proof) which of these functions are uniformly continuous.
(10) Let $x, y \in \mathbb{R}^{n}$. Define the necessary terms (including $|x|$ and $\langle x, y\rangle$ ) and establish the following:
(a) (Lagrange's identity) $|x|^{2} \cdot|y|^{2}-\langle x, y\rangle^{2}=\frac{1}{2} \sum_{i, j=1}^{n}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2}$.
(b) (Cauchy-Schwarz inequality) $\langle x, y\rangle \leqslant|x| \cdot|y|$.
(c) (triangle inequality) $|x+y| \leqslant|x|+|y|$.
(11) Let $(V,\langle\rangle$,$) be a positive definite inner product space. Define the necessary terms$ (including positive definite inner product space and $\|x\|$ ) and establish the following:
(a) (Cauchy-Schwarz inequality) If $x, y \in V$ then $|\langle x, y\rangle| \leqslant\|x\| \cdot\|y\|$.
(b) (triangle inequality) If $x, y \in V$ then $\|x+y\| \leqslant\|x\|+\|y\|$.
(12) Let $q \in \mathbb{R}_{\geqslant 1}$ and let $p \in \mathbb{R}_{>1} \cup\{\infty\}$ be given by $\frac{1}{p}+\frac{1}{q}=1$. Define the necessary terms and establish the following:
(a) (Young's inequality) If $a, b \in \mathbb{R}_{>0}$ then $a^{\frac{1}{p}} b^{\frac{1}{q}} \leqslant \frac{1}{p} a+\frac{1}{q} b$.
(b) (Hölder inequality for $\mathbb{R}^{n}$ ) If $x, y \in \mathbb{R}^{n}$ then $|\langle x, y\rangle| \leqslant\|x\|_{p}\|y\|_{q}$.
(c) (Minkowski inequality for $\mathbb{R}^{n}$ ) If $x, y \in \mathbb{R}^{n}$ then $\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p}$.
(d) (Hölder inequality) If $x \in \ell^{p}$ and $y \in \ell^{q}$ then $|\langle x, y\rangle| \leqslant\|x\|_{p}\|y\|_{q}$.
(e) (Minkowski inequality) If $x \in \ell^{p}$ and $y \in \ell^{q}$ then $\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p}$.

