Assignment 1

MAST30026 Metric and Hilbert Spaces
 Semester II 2015
 Lecturer: Arun Ram

to be turned in before 10am on 10 September 2015
(1) Let (X, d) be a metric space.
(a) Define the metric space topology \mathcal{T} on X.
(b) Define Hausdorff and show that the topological space (X, \mathcal{T}) is Hausdorff.
(c) Define normal and show that the topological space (X, \mathcal{T}) is normal.
(d) Define first countable and show that the topological space (X, \mathcal{T}) is first countable.
(e) Give an example (with proof) of a topological space (Y, \mathcal{U}) which is not Hausdorff.
(f) Give an example (with proof) of a topological space (Y, \mathcal{U}) which is not normal.
(g) Give an example (with proof) of a topological space (Y, \mathcal{U}) which is not first countable.
(2) Let $(V,\langle\rangle$,$) be a positive definite inner product space. The length norm on V$ is the function

$$
\begin{array}{lll}
V & \rightarrow & \mathbb{R}_{\geqslant 0} \\
v & \mapsto & \|v\|
\end{array} \quad \text { given by } \quad\|v\|^{2}=\langle v, v\rangle .
$$

(a) (The Cauchy-Schwarz inequality) Show that if $x, y \in V$ then $|\langle x, y\rangle| \leqslant\|x\| \cdot\|y\|$.
(b) (The triangle inequality) Show that if $x, y \in V$ then $\|x+y\| \leqslant\|x\|+\|y\|$.
(c) (The Pythagorean theorem) Show that

$$
\text { if } x, y \in V \text { and }\langle x, y\rangle=0 \quad \text { then } \quad\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2} .
$$

(d) (The parallelogram law) Show that

$$
\text { if } x, y \in V \text { then } \quad\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

(e) Show that if $(V,\| \|)$ is a normed vector space over \mathbb{R} such that $\left\|\|: V \rightarrow \mathbb{R}_{\geqslant 0}\right.$ satisfies

$$
\text { if } x, y \in V \text { then }\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

then $(V,\langle\rangle$,$) with \langle\rangle:, V \times V \rightarrow \mathbb{R}$ given by

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

is a positive definite symmetric inner product space such that $\|v\|^{2}=\langle v, v\rangle$. To prove that $\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$, first establish the identity

$$
\left\|x_{1}+x_{2}+y\right\|=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\left\|x_{1}+y\right\|^{2}+\left\|x_{2}+y\right\|^{2}-\frac{1}{2}\left\|x_{1}+y-x_{2}\right\|^{2}-\frac{1}{2}\left\|x_{2}+y-x_{1}\right\|^{2} .
$$

To prove that $\langle c x, y\rangle=\lambda c x, y\rangle$, first show that this identity holds when $c \in \mathbb{Z}$, then for $c \in \mathbb{Q}$, and finally by continuity for every $c \in \mathbb{R}$.
(f) Show that if $(V,\| \|)$ is a normed vector space over \mathbb{C} and $\left\|\|: V \rightarrow \mathbb{R}_{\geqslant 0}\right.$ satisfies

$$
\text { if } x, y \in V \text { then }\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

then $(V,\langle\rangle$,$) with \langle\rangle:, V \times V \rightarrow \mathbb{C}$ given by

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)
$$

is a positive definite Hermitian inner product space such that $\|v\|^{2}=\langle v, v\rangle$.
(3) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $X \times Y$ have the product topology.
(a) Show that if $E \subseteq X$ then $\overline{E^{c}}=\left(E^{\circ}\right)^{c}$ and $\left(E^{c}\right)^{\circ}=(\bar{E})^{c}$.
(b) Let E be a open set in X. Show that E is a dense subset of X if and only if E^{c} is nowhere dense in X.
(c) Let U_{1}, U_{2}, \ldots be open dense subsets of X. Show that $\bigcup_{i \in \mathbb{Z}_{>0}} U_{i}$ is dense in X if and only if $\bigcap_{i \in \mathbb{Z}>0}\left(U_{i}\right)^{c}$ has empty interior.
(d) Show that an open set in $X \times Y$ cannot be expected to be of the form $A \times B$ with A open in X and B open in Y.
(e) Show that if $A \subseteq X$ and $B \subseteq Y$ then

$$
\bar{A} \times \bar{B}=\overline{A \times B} \quad \text { and } \quad A^{\circ} \times B^{\circ}=(A \times B)^{\circ}
$$

(4) Let $p \in \mathbb{R}_{\geqslant 1}$ and define

$$
\ell^{p}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|\vec{x}\|_{p}<\infty\right\}, \quad \text { where } \quad\|\vec{x}\|_{p}=\left(\sum_{i \in \mathbb{Z}_{>0}}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for a sequence $\vec{x}=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$.
(a) Show that if $p \leqslant q$ then $\ell^{p} \subseteq \ell^{q}$.
(b) Show that if $p \neq q$ then $\ell^{p} \neq \ell^{q}$.
(5) Carefully define $B(V, W)$ and prove that if W is complete then $B(V, W)$ is complete.
(6) (sequences of functions) Let (X, d) and (C, ρ) be metric spaces. Let

$$
\begin{gathered}
F=\{\text { functions } f: X \rightarrow C\} \quad \text { and define } \quad d_{\infty}: F \times F \rightarrow \mathbb{R}_{\geqslant 0} \cup\{\infty\} \quad \text { by } \\
d_{\infty}(f, g)=\sup \{\rho(f(x), g(x)) \mid x \in X\} .
\end{gathered}
$$

(Warning d_{∞} is not quite a metric since its target is not $\mathbb{R}_{\geqslant 0}$.) Let

$$
\left(f_{1}, f_{2}, \ldots\right) \text { be a sequence in } F \text { and let } f: X \rightarrow C
$$

be a function.
The sequence $\left(f_{1}, f_{2}, \ldots\right)$ in F converges pointwise to f if the sequence $\left(f_{1}, f_{2}, \ldots\right)$ satisfies

$$
\text { if } x \in X \text { and } \epsilon \in \mathbb{R}_{>0} \text { then there exists } N \in \mathbb{Z}_{>0} \text { such that }
$$ if $n \in \mathbb{Z}_{\geqslant N}$ then $d\left(f_{n}(x), f(x)\right)<\epsilon$.

The sequence $\left(f_{1}, f_{2}, \ldots\right)$ in F converges uniformly to f if the sequence $\left(f_{1}, f_{2}, \ldots\right)$ satisfies

$$
\begin{aligned}
& \text { if } \epsilon \in \mathbb{R}_{>0} \text { then there exists } N \in \mathbb{Z}_{>0} \text { such that } \\
& \quad \text { if } x \in X \text { and } n \in \mathbb{Z}_{\geqslant N} \text { then } \rho\left(f_{n}(x), f(x)\right)<\epsilon .
\end{aligned}
$$

(a) Show that $\left(f_{1}, f_{2}, \ldots\right)$ converges pointwise to f if and only if $\left(f_{1}, f_{2}, \ldots\right)$ satisfies

$$
\text { if } x \in X \quad \text { then } \quad \lim _{n \rightarrow \infty} \rho\left(f_{n}(x), f(x)\right)=0 \text {. }
$$

(b) Show that $\left(f_{1}, f_{2}, \ldots\right)$ converges uniformly to f if and only if $\left(f_{1}, f_{2}, \ldots\right)$ satisfies

$$
\lim _{n \rightarrow \infty} d_{\infty}\left(f_{n}, f\right)=0
$$

(7) For a topological space X and a sequence $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ in X write

$$
\begin{array}{ll}
y=\lim _{n \rightarrow \infty} x_{n}, & \begin{array}{l}
\text { if } y \text { is a limit point of } \vec{x}: \mathbb{Z}_{>0} \rightarrow X \\
\text { with respect to the tail filter on } \mathbb{Z}_{>0} .
\end{array}
\end{array}
$$

(a) Let X and Y be topological spaces. Define what it means for a function $f: X \rightarrow Y$ to be continuous.
(b) Let X and Y be uniform spaces. Define what it means for a function $f: X \rightarrow Y$ to be uniformly continuous.
(c) Let X and Y be uniform spaces. Show that if $f: X \rightarrow Y$ uniformly continuous then $f: X \rightarrow Y$ is continuous.
(d) Let (X, d) and (Y, ρ) be metric spaces and let $f: X \rightarrow Y$ be a function. Show that $f: X \rightarrow Y$ is continuous if and only if f satisfies
if $\epsilon \in \mathbb{R}_{>0}$ and $x \in X$ then there exists $\delta \in \mathbb{R}_{>0}$ such that if $y \in X$ and $d(x, y)<\delta$ then $\rho(f(x), f(y))<\epsilon$.
(e) Let (X, d) and (Y, ρ) be metric spaces and let $f: X \rightarrow Y$ be a function. Show that $f: X \rightarrow Y$ is uniformly continuous if and only if f satisfies

$$
\begin{aligned}
& \text { if } \epsilon \in \mathbb{R}_{>0} \text { then there exists } \delta \in \mathbb{R}_{>0} \text { such that } \\
& \quad \text { if } x, y \in X \text { and } d(x, y)<\delta \text { then } \rho(f(x), f(y))<\epsilon
\end{aligned}
$$

(f) Let (X, d) and (Y, ρ) be metric spaces and let $f: X \rightarrow Y$ be a function. Show that f is continuous if and only if f satisfies

$$
\text { if }\left(x_{1}, x_{2}, \ldots\right) \text { is a sequence in } X \text { and } \lim _{n \rightarrow \infty} x_{n} \text { exists then } f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

(8) Let C be the Cantor set and let $Q=\{x \in \mathbb{Q} \mid 0 \leqslant x \leqslant 1\}$. Let C and Q have the subspace topology of the interval $X=[0,1]=\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 1\}$ in \mathbb{R}, where \mathbb{R} has the standard topology.
(a) Show that C is closed in X and not open in X, and Q is not closed in X and Q is not open in X.
(b) Show that C is nowhere dense in X and Q is dense in X.
(c) Show that C^{c} is dense in X and Q^{c} is dense in X.
(d) Show that C is compact and Q is not compact.
(e) Show that C and Q are both totally disconnected (i.e. every connected component is a set with a single point).
(e) Let μ be a function which assigns values to certain subsets of X which satisfies

$$
\mu([a, b])=b-a, \quad \text { if } a, b \in \mathbb{R} \text { and } 0 \leqslant a<b \leqslant 1
$$

and

$$
\mu\left(\bigcup_{i \in \mathbb{Z}>0} A_{i}\right)=\sum_{i \in \mathbb{Z}>0} \mu\left(A_{i}\right) \quad \text { if } A_{1}, A_{2}, \ldots \text { are disjoint subsets of } X
$$

Show that

$$
\mu(C)=0, \quad \mu\left(C^{c}\right)=1, \quad \mu(Q)=0, \quad \text { and } \quad \mu\left(Q^{c}\right)=1
$$

(f) Show that $\operatorname{Card}(C)=\operatorname{Card}(\mathbb{R}), \operatorname{Card}\left(C^{c}\right)=\operatorname{Card}(\mathbb{R}), \operatorname{Card}(Q) \neq \operatorname{Card}(\mathbb{R})$ and $\operatorname{Card}\left(Q^{c}\right)=\operatorname{Card}(\mathbb{R})$.

