Assignment 1

MAST30026 Metric and Hilbert Spaces Semester II 2015 Lecturer: Arun Ram to be turned in before 10am on 10 September 2015

- (1) Let (X, d) be a metric space.
 - (a) Define the metric space topology \mathcal{T} on X.
 - (b) Define Hausdorff and show that the topological space (X, \mathcal{T}) is Hausdorff.
 - (c) Define normal and show that the topological space (X, \mathcal{T}) is normal.
 - (d) Define first countable and show that the topological space (X, \mathcal{T}) is first countable.
 - (e) Give an example (with proof) of a topological space (Y, \mathcal{U}) which is not Hausdorff.
 - (f) Give an example (with proof) of a topological space (Y, \mathcal{U}) which is not normal.
 - (g) Give an example (with proof) of a topological space (Y, \mathcal{U}) which is not first countable.
- (2) Let (V, \langle, \rangle) be a positive definite inner product space. The *length norm* on V is the function

$$\begin{array}{ll} V \to \mathbb{R}_{\geq 0} \\ v \mapsto \|v\| & \text{given by} & \|v\|^2 = \langle v, v \rangle. \end{array}$$

- (a) (The Cauchy-Schwarz inequality) Show that if $x, y \in V$ then $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.
- (b) (The triangle inequality) Show that if $x, y \in V$ then $||x + y|| \leq ||x|| + ||y||$.
- (c) (The Pythagorean theorem) Show that

if
$$x, y \in V$$
 and $\langle x, y \rangle = 0$ then $||x||^2 + ||y||^2 = ||x + y||^2$.

(d) (The parallelogram law) Show that

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$.

(e) Show that if $(V, \| \|)$ is a normed vector space over \mathbb{R} such that $\| \| \colon V \to \mathbb{R}_{\geq 0}$ satisfies

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$,

then (V, \langle, \rangle) with $\langle, \rangle \colon V \times V \to \mathbb{R}$ given by

$$\langle x, y \rangle = \frac{1}{2}(\|x+y\|^2 - \|x\|^2 - \|y\|^2) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$

is a positive definite symmetric inner product space such that $||v||^2 = \langle v, v \rangle$. To prove that $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$, first establish the identity

$$||x_1+x_2+y|| = ||x_1||^2 + ||x_2||^2 + ||x_1+y||^2 + ||x_2+y||^2 - \frac{1}{2}||x_1+y-x_2||^2 - \frac{1}{2}||x_2+y-x_1||^2.$$

To prove that $\langle cx, y \rangle = \lambda cx, y \rangle$, first show that this identity holds when $c \in \mathbb{Z}$, then for $c \in \mathbb{Q}$, and finally by continuity for every $c \in \mathbb{R}$.

(f) Show that if $(V, \| \|)$ is a normed vector space over \mathbb{C} and $\| \|: V \to \mathbb{R}_{\geq 0}$ satisfies

if
$$x, y \in V$$
 then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$,

then (V, \langle, \rangle) with $\langle, \rangle \colon V \times V \to \mathbb{C}$ given by

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

is a positive definite Hermitian inner product space such that $||v||^2 = \langle v, v \rangle$.

- (3) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $X \times Y$ have the product topology.
 - (a) Show that if $E \subseteq X$ then $\overline{E^c} = (E^\circ)^c$ and $(E^c)^\circ = (\overline{E})^c$.
 - (b) Let E be a open set in X. Show that E is a dense subset of X if and only if E^c is nowhere dense in X.
 - (c) Let U_1, U_2, \ldots be open dense subsets of X. Show that $\bigcup_{i \in \mathbb{Z}_{>0}} U_i$ is dense in X if

and only if $\bigcap_{i \in \mathbb{Z}_{>0}} (U_i)^c$ has empty interior.

- (d) Show that an open set in $X \times Y$ cannot be expected to be of the form $A \times B$ with A open in X and B open in Y.
- (e) Show that if $A \subseteq X$ and $B \subseteq Y$ then

$$\overline{A} \times \overline{B} = \overline{A \times B}$$
 and $A^{\circ} \times B^{\circ} = (A \times B)^{\circ}$.

(4) Let $p \in \mathbb{R}_{\geq 1}$ and define

$$\ell^p = \{(x_1, x_2, \ldots) \mid x_i \in \mathbb{R} \text{ and } \|\vec{x}\|_p < \infty\}, \text{ where } \|\vec{x}\|_p = \left(\sum_{i \in \mathbb{Z}_{>0}} |x_i|^p\right)^{1/p}$$

for a sequence $\vec{x} = (x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$.

- (a) Show that if $p \leq q$ then $\ell^p \subseteq \ell^q$.
- (b) Show that if $p \neq q$ then $\ell^p \neq \ell^q$.

- (5) Carefully define B(V, W) and prove that if W is complete then B(V, W) is complete.
- (6) (sequences of functions) Let (X, d) and (C, ρ) be metric spaces. Let

 $F = \{ \text{functions } f \colon X \to C \}$ and define $d_{\infty} \colon F \times F \to \mathbb{R}_{\geq 0} \cup \{ \infty \}$ by

$$d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}.$$

(Warning d_{∞} is not quite a metric since its target is not $\mathbb{R}_{\geq 0}$.) Let

$$(f_1, f_2, \dots)$$
 be a sequence in F and let $f: X \to C$

be a function.

The sequence $(f_1, f_2, ...)$ in F converges pointwise to f if the sequence $(f_1, f_2, ...)$ satisfies

if
$$x \in X$$
 and $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that
if $n \in \mathbb{Z}_{\geq N}$ then $d(f_n(x), f(x)) < \epsilon$.

The sequence $(f_1, f_2, ...)$ in F converges uniformly to f if the sequence $(f_1, f_2, ...)$ satisfies

if $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $x \in X$ and $n \in \mathbb{Z}_{\geq N}$ then $\rho(f_n(x), f(x)) < \epsilon$.

(a) Show that $(f_1, f_2, ...)$ converges pointwise to f if and only if $(f_1, f_2, ...)$ satisfies

if $x \in X$ then $\lim_{n \to \infty} \rho(f_n(x), f(x)) = 0.$

(b) Show that $(f_1, f_2, ...)$ converges uniformly to f if and only if $(f_1, f_2, ...)$ satisfies

$$\lim_{n \to \infty} d_{\infty}(f_n, f) = 0.$$

(7) For a topological space X and a sequence $\vec{x} = (x_1, x_2, ...)$ in X write

$$y = \lim_{n \to \infty} x_n, \qquad \begin{array}{l} \text{if } y \text{ is a limit point of } \vec{x} \colon \mathbb{Z}_{>0} \to X \\ \text{with respect to the tail filter on } \mathbb{Z}_{>0}. \end{array}$$

- (a) Let X and Y be topological spaces. Define what it means for a function $f: X \to Y$ to be continuous.
- (b) Let X and Y be uniform spaces. Define what it means for a function $f: X \to Y$ to be uniformly continuous.
- (c) Let X and Y be uniform spaces. Show that if $f: X \to Y$ uniformly continuous then $f: X \to Y$ is continuous.
- (d) Let (X, d) and (Y, ρ) be metric spaces and let $f: X \to Y$ be a function. Show that $f: X \to Y$ is continuous if and only if f satisfies

if
$$\epsilon \in \mathbb{R}_{>0}$$
 and $x \in X$ then there exists $\delta \in \mathbb{R}_{>0}$ such that
if $y \in X$ and $d(x, y) < \delta$ then $\rho(f(x), f(y)) < \epsilon$.

(e) Let (X, d) and (Y, ρ) be metric spaces and let $f: X \to Y$ be a function. Show that $f: X \to Y$ is uniformly continuous if and only if f satisfies

> if $\epsilon \in \mathbb{R}_{>0}$ then there exists $\delta \in \mathbb{R}_{>0}$ such that if $x, y \in X$ and $d(x, y) < \delta$ then $\rho(f(x), f(y)) < \epsilon$.

(f) Let (X, d) and (Y, ρ) be metric spaces and let $f: X \to Y$ be a function. Show that f is continuous if and only if f satisfies

if $(x_1, x_2, ...)$ is a sequence in X and $\lim_{n \to \infty} x_n$ exists then $f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n)$.

- (8) Let C be the Cantor set and let $Q = \{x \in \mathbb{Q} \mid 0 \leq x \leq 1\}$. Let C and Q have the subspace topology of the interval $X = [0, 1] = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ in \mathbb{R} , where \mathbb{R} has the standard topology.
 - (a) Show that C is closed in X and not open in X, and Q is not closed in X and Q is not open in X.
 - (b) Show that C is nowhere dense in X and Q is dense in X.
 - (c) Show that C^c is dense in X and Q^c is dense in X.
 - (d) Show that C is compact and Q is not compact.
 - (e) Show that C and Q are both totally disconnected (i.e. every connected component is a set with a single point).
 - (e) Let μ be a function which assigns values to certain subsets of X which satisfies

$$\mu([a, b]) = b - a$$
, if $a, b \in \mathbb{R}$ and $0 \leq a < b \leq 1$,

and

$$\mu\Big(\bigcup_{i\in\mathbb{Z}_{>0}}A_i\Big)=\sum_{i\in\mathbb{Z}_{>0}}\mu(A_i) \quad \text{if } A_1,A_2,\dots \text{ are disjoint subsets of } X \ .$$

Show that

$$\mu(C) = 0, \quad \mu(C^c) = 1, \quad \mu(Q) = 0, \text{ and } \mu(Q^c) = 1.$$

(f) Show that $\operatorname{Card}(C) = \operatorname{Card}(\mathbb{R})$, $\operatorname{Card}(C^c) = \operatorname{Card}(\mathbb{R})$, $\operatorname{Card}(Q) \neq \operatorname{Card}(\mathbb{R})$ and $\operatorname{Card}(Q^c) = \operatorname{Card}(\mathbb{R})$.