Tutorial Sheet 3

MAST30026 Metric and Hilbert Spaces Semester II 2015 Lecturer: Arun Ram

- (1) (The neighborhood filter is a filter) Let (X, \mathcal{T}) be a topological space and let $x \in X$.
 - (a) Define the neighborhood filter of x.
 - (b) Define filter.
 - (c) Show that the neighborhood filter of x is a filter on X.
- (2) (Comparing the definitions of interior, closure, sup and inf) Let (X, \mathcal{T}_X) be a topological space and let $E \subseteq X$. Let (S, \leq) be a partially ordered set and let $F \subseteq S$.
 - (a) Define the interior of E.
 - (b) Define the closure of E.
 - (c) Define the sup, or least upper bound, of F.
 - (d) Define the inf, or greatest lower bound, of F.

State the definitions in (a-d) to be as similar to each other as possible.

- (e) Give an example to show that $\sup(F)$ does not always exist.
- (f) Give an example to show that $\inf(F)$ does not always exist.
- (g) Show that the interior of E always exists.
- (h) Show that the closure of E always exists.
- (3) (closed is not the same as not open) Let $X = \mathbb{R}$, $Y = \mathbb{R}_{(0,1)} = \{x \in \mathbb{R} \mid 0 < x < 1\}$ and $Z = \mathbb{R}_{[0,1]} = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ all with metric d(x, y) = |x - y|.
 - (a) Show that (0, 1] is not open in X and not closed in X.
 - (b) Show that (0, 1) is open in X and not closed in X.
 - (c) Show that [0,1] is closed in X and not open in X.
 - (d) Show that \mathbb{R} is open in X and closed in X.

- (e) Show that (0, 1) is closed in Y and not closed in X.
- (f) Show that [0, 1] is open in Z and not open in X.
- (g) Show that \mathbb{R} is closed and open in \mathbb{R} .
- (h) Show that \mathbb{R} is closed and not open in \mathbb{R}^2 .
- (j) Show that the Cantor set is closed in $[0,1] = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}.$
- (4) (closure of the open ball of radius 1 is not always distance ≤ 1) Let (X, d) be a metric space. The ball of radius ϵ centered at x is

$$B_{\epsilon}(x) = \{ y \in X \mid d(y, x) < \epsilon \}.$$

For a subset $A \subseteq X$ let \overline{A} be the closure of A in X, in the metric space topology.

(a) Show that if $X = \mathbb{Z}$ with metric given by d(x, y) = |x - y| then

$$\overline{B_1(0)} \neq \{ y \in X \mid d(x,y) \leqslant 1 \}.$$

(b) Show that if $X = \mathbb{R}$ with metric given by d(x, y) = |x - y| then

$$\overline{B_1(0)} = \{ y \in X \mid d(x,y) \leq 1 \}.$$

(c) Let $X = \mathbb{R}^n$ with norm given by $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$ for $x = (x_1, x_2, \dots, x_n)$ and with metric given by d(x, y) = ||x - y|| then

$$\overline{B_1(0)} = \{ y \in X \mid d(x, y) \leq 1 \}.$$

- (5) (Interiors, closures and complements) Let (X, \mathcal{T}) be a topological space and let $E \subseteq X$.
 - (a) Show that $\overline{E^c} = (E^{\circ})^c$, by using the definition of closure.
 - (b) Show that $(E^c)^\circ = (\overline{E})^c$, by taking complements and using (a).
- (6) (boundaries, dense sets and nowhere dense sets) Let (X, \mathcal{T}) be a topological space. Let $E \subseteq X$.

The boundary of E is $\partial E = \overline{E} \cap \overline{E^c}$. The set E is dense in X if $\overline{E} = X$. The set E is nowhere dense in X if $(\overline{E})^\circ = \emptyset$.

Show that

- (a) \mathbb{Q} is dense in \mathbb{R} and $\mathbb{Q}^{\circ} = \emptyset$.
- (b) (0,1] is dense in [0,1].

- (c) The boundary of \mathbb{Q} in \mathbb{R} is \mathbb{R} .
- (d) The boundary of (0, 1] in \mathbb{R} is $\{0, 1\}$.
- (e) $\mathbb{Z}_{>0}$ and \mathbb{Z} are nowhere dense in \mathbb{R} .
- (f) \mathbb{R} is nowhere dense in \mathbb{R}^2 .
- (g) The Cantor set is nowhere dense in [0, 1].
- (7) (dense implies not nowhere dense) Let (X, \mathcal{T}) be a topological space. Let $E \subseteq X$.
 - (a) Show that if E is dense in X then E is not nowhere dense in X.
 - (b) Show that if E is nowhere dense in X then E is not dense in X.
 - (c) Give an example of $E \subseteq X$ such that E is not dense in X and E is not nowhere dense in X.
- (8) (intersection of two open dense sets is open and dense) Let (X, d) be a metric space and let $U \subseteq X$ and $V \subseteq X$. Show that if U and V are open and dense in X then $U \cap V$ is open and dense in X.
- (9) (intersection of two dense sets is not necessarily dense) Let $X = \mathbb{R}$ with the usual metric and let $U = \mathbb{Q}$ and $V = \mathbb{Q}^c$. Show that U and V are dense in \mathbb{Q} and $U \cap V = \emptyset$.
- (10) (characterising bounded sets) Let (X, d) be a metric space.
 - (a) Define bounded subset of X.
 - (b) Show that a subset $E \subseteq X$ is bounded if and only if there exists an open ball $B_{\epsilon}(x)$ such that $E \subseteq B_{\epsilon}(x)$.
- (11) (The subspace topology is a topology) Let (X, \mathcal{T}) be a topological space and let $Y \subseteq X$. Define the subspace topology on Y and show that it is a topology on Y.
- (12) (The subspace metric is a metric) Let (X, d) be a topological space and let $Y \subseteq X$.
 - (a) Define the subspace metric on Y.
 - (b) Show that the subspace metric on Y is a metric on Y.
 - (c) Show that the metric space topology of Y with the subspace metric is the subspace topology on Y.
- (13) (A subspace of a vector space) Let X be a K-vector space. A subspace of X is a subset $V \subseteq X$ such that

- (a) If $v_1, v_2 \in V$ then $v_1 + v_2 \in V$,
- (b) If $v \in V$ and $c \in \mathbb{K}$ then $cv \in V$.

Show that V with the same operations of addition and scalar multiplication as in X is a vector space.

- (14) (A subspace of a normed vector space is a normed vector space) Let X be a normed vector space. Let $V \subseteq X$ be a subspace. Show that V is a normed vector space with the same norm.
- (15) (The product topology is a topology) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Define the product topology on $X \times Y$ and show that it is a topology on $X \times Y$.
- (16) (The product metric is a metric) Let (X, d_X) and (Y, d_Y) be topological spaces.
 - (a) Define the product metric $d: (X \times Y) \times (X \times Y) \to \mathbb{R}_{\geq 0}$.
 - (b) Show that $d: (X \times Y) \times (X \times Y) \to \mathbb{R}_{\geq 0}$ is a metric on $X \times Y$.
 - (c) Let \mathcal{T}_X be the metric space topology on (X, d_X) and let \mathcal{T}_Y be the metric space topology on (X, d_Y) . Show that the metric space topology of $(X \times Y, d)$ is the product topology on $X \times Y$.
- (17) (The product topology on $\mathbb{R} \times \mathbb{R}$ is the standard topology on \mathbb{R}^2) Show that the product topology on $\mathbb{R} \times \mathbb{R}$ is equal to the standard topology on \mathbb{R}^2 .
- (18) (The product metric on $\mathbb{R} \times \mathbb{R}$ is not the standard metric on \mathbb{R}^2) Show that the product metric on $\mathbb{R} \times \mathbb{R}$ (where \mathbb{R} has the standard metric) is *not* the standard metric on \mathbb{R}^2 .
- (19) (Metrics that produce the product topology) Let (X_1, d_1) and (X_2, d_2) be metric spaces. Let $Y = X_1 \times X_2$ and define

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2),$$

$$\rho((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\},$$

$$\sigma((x_1, x_2), (y_1, y_2)) = \sqrt{d_1(x_1, y_1)^2 + d_2(x_2, y_2)^2}$$

- (a) Show that (Y, d), (Y, ρ) and (Y, σ) are metric spaces.
- (b) Show that (Y, d), (Y, ρ) and (Y, σ) are the same as topological spaces.

(20) (Lipschitz equivalence implies topological equivalence) Let X be a set and let

 $d_1: X \times X \to \mathbb{R}_{\geq 0}$ and $d_2: X \times X \to \mathbb{R}_{\geq 0}$ be metrics on X.

The metrics d_1 and d_2 are topologically equivalent if

the metric space topology on (X, d_1) and on (X, d_2) are the same.

The metrics d_1 and d_2 are *Lipschitz equivalent* if there exist $c_1, c_2 \in \mathbb{R}_{>0}$ such that

if
$$x, y \in X$$
 then $c_1 d_2(x, y) \leq d_1(x, y) \leq c_2 d_1(x, y)$.

Show that if d_1 and d_2 are Lipschitz equivalent then d_1 and d_2 are topologically equivalent.

(21) (every metric space is topologically equivalent to a bounded metric space) A metric space (X, d) is bounded if it satisfies

there exists $M \in \mathbb{R}_{\geq 0}$ such that if $x_1, x_2 \in X$ then $d(x_1, x_2) < M$.

Let (X, d) be a metric space and define $b: X \times X \to \mathbb{R}_{\geq 0}$ by

$$b(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

- (a) Show that $b: X \times X \to \mathbb{R}_{\geq 0}$ is a metric on X.
- (b) Show that the metric space topology of (X, b) and the metric space topology on (X, d) are the same.
- (c) Show that (X, b) is a bounded metric space.
- (22) (boundedness is not a topological property) A metric space (X, d) is bounded if it satisfies

there exists $M \in \mathbb{R}_{>0}$ such that if $x_1, x_2 \in X$ then $d(x_1, x_2) < M$.

Let $X = \mathbb{R}$ and let $d: X \times X \to \mathbb{R}_{\geq 0}$ and $b: X \times X \to \mathbb{R}_{\geq 0}$ be the metrics on \mathbb{R} given by

$$d(x,y) = |x-y|$$
 and $b(x,y) = \frac{|x-y|}{1+|x-y|}$.

Show that (X, d) and (X, b) have the same topology, that (X, d) is unbounded, and (X, b) is bounded.

(23) (B(V, W) is a normed vector space) Let V and W be normed vector spaces. Show that

$$B(V,W) = \{ \text{linear transformations } T \colon V \to W \mid ||T|| < \infty \} \quad \text{where}$$
$$||T|| = \sup \left\{ \frac{||Tv||}{||v||} \mid v \in V \right\},$$

is a normed vector space.