Assignment 2: Q7 updated

MAST30026 Metric and Hilbert Spaces
Semester II 2016
Lecturer: Arun Ram

to be turned in before 10am on 13 October 2016

(1) (Eigenvectors)

(a) Carefully define linear operator, eigenvector and eigenvalue.
(b) Let V be a complex vector space and let $T: V \rightarrow V$ be a linear operator. Prove that there exists $v \in V$ with $v \neq 0$ such that v is an eigenvector of T.
(c) Use the proof of (b) to explicitly produce an eigenvector of the linear transformation $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ corresponding to the matrix

$$
A=\left(\begin{array}{ccc}
1 & 5 & -2 \\
6 & 0 & 2 \\
\pi & \sqrt{7} & 0
\end{array}\right)
$$

(d) Let V be the real vector space \mathbb{R}^{2}. Give an example of a linear transformation $T: V \rightarrow V$ that does not have a nonzero eigenvector.
(2) (Self adjoint operators) Let $T: V \rightarrow V$ be a self adjoint linear operator.
(a) Let v be an eigenvector of T with eigenvalue λ. Prove that $\lambda \in \mathbb{R}$.
(b) Let λ and γ be eigenvalues of T with $\lambda \neq \gamma$. Let

$$
X_{\lambda}=\{v \in V \mid T v=\lambda v\} \quad \text { and } \quad X_{\gamma}=\{v \in V \mid T v=\gamma v\} .
$$

Prove that X_{λ} is orthogonal to X_{γ}.
(3) (Alternative formula for the norm of a bounded self adjoint operator)
(a) Carefully define the norm of a linear operator $T: V \rightarrow V$.
(b) Carefully define bounded linear operator and self adjoint linear operator.
(c) Let $T: V \rightarrow V$ be a bounded self adjont linear operator. Prove that

$$
\|T\|=\sup \{|\langle T x, x\rangle| \mid\|x\|=1\}
$$

(4) (Existence of eigenvectors of bounded self adjoint linear operators) Let H be a Hilbert space and let $T: H \rightarrow H$ be a bounded self adjoint operator.
(a) Show that there exists $x \in H$ with $\quad\|x\|=1 \quad$ and $\quad|\langle T x, x\rangle|=\|T\|$.
(b) Let $x \in H$ be as in (a). Show that x is an eigenvector of T with eigenvalue $\|T\|$.
(c) Use the proof of (a) to explicitly produce an eigenvector of the linear transformation $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ corresponding to the matrix

$$
A=\left(\begin{array}{ccc}
1 & 5 & -2 \\
5 & 0 & \pi \\
-2 & \pi & 0
\end{array}\right)
$$

(5) (Compact linear operators) Let H be a Hilbert space.
(a) Carefully define compact linear operator.
(b) Give an example (with proof) of a bounded linear operator $T: \ell^{2} \rightarrow \ell^{2}$ which is compact and a bounded linear operator $S: \ell^{2} \rightarrow \ell^{2}$ which is not compact.
(c) Let $T: H \rightarrow H$ be a compact linear operator. Assume $\lambda \in \mathbb{C}$ and $\lambda \neq 0$ and let

$$
X_{\lambda}=\{v \in H \mid T v=\lambda v\} .
$$

Show that X_{λ} is a subspace of H and that $\operatorname{dim}\left(X_{\lambda}\right)$ is finite.
(6) (Expansions in orthonormal sequences) Let H be a Hilbert space. Let (a_{1}, a_{2}, \ldots) be an orthonormal sequence in H.
(a) Let $x \in H$. Show that $\sum_{n=1}^{\infty}\left|\left\langle x, a_{n}\right\rangle\right|^{2} \leqslant\|x\|^{2}$.
(b) Show that $P(x)=\sum_{n=1}^{\infty}\left\langle x, a_{n}\right\rangle a_{n}$, exists in H.
(c) Let $W=\operatorname{span}\left\{a_{1}, a_{2}, \ldots\right\}$. With $P(x)$ as in (b), show that $P(x) \in \bar{W}$.
(d) With W as in (c) and $P(x)$ as in (b), show that $x-P(x) \in \bar{W}^{\perp}$.
(7) (Fourier's orthonormal sequences)
(a) Let $L^{2}(\mathbb{T})$ be the set of (Lebesgue measurable) functions $f:[-\pi, \pi] \rightarrow \mathbb{C}$ such that

$$
\int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty
$$

Prove that $L^{2}(\mathbb{T})$ with $\langle\rangle:, L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ given by

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

is a Hilbert space.
(b) Prove that setting $a_{n}=e^{i n x}$ defines an orthonormal sequence ($a_{0}, a_{1}, a_{-1}, a_{2}, a_{-2}, \ldots$) in $L^{2}(\mathbb{T})$.
(c) Expand the function $f(x)=x^{2}$ in terms of the orthonormal sequence of (b).
(d) Evaluate the expansion in (c) at $x=\pi$ to prove that

$$
\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=\frac{\pi^{2}}{6}
$$

