Then $(-a)^2 > 0$, by Case 1. So $a^2 > 0$, by Proposition 11.6.2 (f). (c) To show: $1 \ge 0$. $1 = 1^2 \ge 0$, by part (b). (d) Assume $a \in \mathbb{F}$ and a > 0. By part (b), $a^{-2} = (a^{-1})^2 > 0$. So $a(a^{-1})^2 > a \cdot 0$, by (OFb). So $a^{-1} > 0$, by (Fh) and Proposition 11.6.2 (a). (e) Assume $a, b \in \mathbb{F}$ and $a \ge 0$ and $b \ge 0$. $a + b \ge 0 + b$, by (OFa), $\geq 0 + 0$, by (OFa), = 0, by (Fc). (f) Assume $a, b \in \mathbb{F}$ and 0 < a < b. So a > 0 and b > 0. Then, by part (d), $a^{-1} > 0$ and $b^{-1} > 0$. Thus, by (OFb), $a^{-1}b^{-1} > 0$. Since a < b, then b - a > 0, by (OFa). So, by (OFb), $a^{-1}b^{-1}(b-a) > 0$. So, by (Fh), $a^{-1} - b^{-1} > 0$.

1.4.5. If W is complete then B(V, W) is complete. —

Theorem 1.4.5. — Let (V, || ||) and (W, || ||) be normed vector spaces and let $B(V, W) = \{ linear transformations T : V \to W | ||T|| < \infty \}$ where

$$||T|| = \sup\left\{\frac{||Tv||}{||v||} \mid v \in V\right\}.$$

If W is complete then B(V, W) is complete.

So, by (OFa), $a^{-1} > y^{-1}$.

Proof. —

To show: If W is complete then B(V, W) is complete. Assume W is complete. To show: If T_1, T_2, \ldots is a Cauchy sequence in B(V, W) then T_1, T_2, \ldots converges. Assume $T_1: V \to W, T_2: V \to W, \ldots$ is a Cauchy sequence in B(V, W). To show: There exists $T: V \to W$ with $T \in B(V, W)$ such that $\lim_{n\to\infty} T_n = T$. Define $T: V \to W$ by $T(x) = \lim_{n\to\infty} T_n(x)$. To show: (a) If $x \in V$ then T(x) exists. (b) $T \in B(V, W)$. (c) $\lim_{n\to\infty} T_n = T$. (a) Assume $x \in V$.

(a) Assume $x \in V$. To show: $\lim_{n\to\infty} T_n(x)$ exists. To show: $T_1(x), T_2(x), \dots$ converges in W. Since W is complete, to show: $T_1(x), T_2(x), \ldots$ is Cauchy. To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq N}$ then $||T_r(x) - T_s(x)|| < \epsilon$. Assume $\epsilon \in \mathbb{R}_{>0}$. Using that T_1, T_2, \ldots is Cauchy, let N be such that if $r, s \in \mathbb{Z}_{\geq N}$ then $||T_r - T_s|| < \frac{\epsilon}{||x||}$ To show: If $r, s \in \mathbb{Z}_{\geq N}$ then $||T_r(x) - T_s(x)|| < \epsilon$. Assume $r, s \in \mathbb{Z}_{\geq N}$. To show: $||T_r(x) - T_s(x)|| < \epsilon$. $||T_r(x) - T_s(x)|| \leq ||T_r - T_s|| \cdot ||x|| < \frac{\epsilon}{||x||} \cdot ||x|| = \epsilon.$ So $T_1(x), T_2(x), \ldots$ is Cauchy and, since W is complete, $T_1(x), T_2(x), \ldots$ converges. So $T(x) = \lim_{n \to \infty} T_n(x)$ exists. (b) To show: $T \in B(V, W)$. To show: (ba) T is a linear transformation. (bb) $||T|| < \infty$. (ba) To show: (baa) If $x_1, x_2 \in V$ then $T(x_1 + x_2) = T(x_1) + T(x_2)$. (bab) If $c \in \mathbb{K}$ and $x \in V$ then T(cx) = cT(x). (baa) Assume $x_1, x_2 \in V$. To show: $T(x_1 + x_2) = T(x_1) + T(x_2)$. Since each T_n is a linear transformation and since addition $\begin{array}{c} +: & W \times W \rightarrow W \\ & (w_1, w_2) & \mapsto & w_1 + w_2 \end{array}$ is continuous in W, then $T(x_1 + x_2) = \lim_{n \to \infty} T_n(x_1 + x_2) = \lim_{n \to \infty} (T_n(x_1) + T_n(x_2))$ $= \lim_{n \to \infty} T_n(x_1) + \lim_{n \to \infty} T_n(x_2) = T(x_1) + T(x_2).$ (bab) Assume $c \in \mathbb{K}$ and $x \in V$. To show: T(cx) = cT(x). Since each T_n is a linear transformation and since scalar multiplication $\begin{array}{ccc} \mathbb{K} \times W & \to & W\\ (c,w) & \mapsto & cw \end{array}$ is continuous in W, $T(cx) = \lim_{n \to \infty} T_n(cx) = \lim_{n \to \infty} cT_n(x) = c \lim_{n \to \infty} T_n(x) = cT(x).$ So T is a linear transformation. (bb) To show: $||T|| < \infty$. To show: $||T|| = \sup \left\{ \frac{||Tx||}{||x||} \mid x \in V \right\}$ exists in $\mathbb{R}_{\geq 0}$. Since $\| \| : W \to \mathbb{R}_{\geq 0}$ is continuous $||Tx|| = ||\lim_{n \to \infty} T_n(x)|| = \lim_{n \to \infty} ||T_n(x)||$ $\leqslant \lim_{n \to \infty} \|T_n\| \cdot \|x\| = \|x\| \left(\lim_{n \to \infty} \|T_n\| \right).$

 $||T_s|| \leq ||T_r - T_s||$, the sequence $||T_1||, ||T_2||, \dots$ is Cauchy.

Since $\mathbb{R}_{\geq 0}$ is complete, $\lim_{n \to \infty} ||T_n||$ exists.

So

By assumption, the sequence T_1, T_2, \ldots is Cauchy and thus, since $||T_r|| -$

 $||T|| = \sup\left\{\frac{||Tx||}{||x||} \mid x \in V\right\} \leqslant \lim_{n \to \infty} ||T_n||,$ and the right hand side exists in $\mathbb{R}_{\geq 0}$. So $||T|| < \infty$. So $T \in B(V, W)$. (c) To show: $\lim T_n = T$. To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $\|T - T_n\| < \epsilon.$ Assume $\epsilon \in \mathbb{R}_{>0}$. Using that the sequence T_1, T_2, \ldots is Cauchy, let $N \in \mathbb{Z}_{>0}$ be such that if $m, n \in \mathbb{Z}_{\geq N}$ then $||T_m - T_n|| < \frac{\epsilon}{2}$. To show: If $n \in \mathbb{Z}_{\geq N}$ then $||T - T_n|| < \epsilon$. Assume $n \in \mathbb{Z}_{\geq N}$. To show: $||T - T_n|| < \epsilon$. Since $\| \| : W \to \mathbb{R}_{\geq 0}$ is continuous, $||T(x) - T_n(x)|| = ||\lim_{m \to \infty} (T_m(x) - T_n(x))|| = \lim_{m \to \infty} ||T_m(x) - T_n(x)||.$ Since $||T_m - T_n|| < \frac{\epsilon}{2}$ for $m \in \mathbb{Z}_{\geq N}$ then $||T_m(x) - T_n(x)|| < \frac{\epsilon}{2} ||x||$ for $m \in \mathbb{Z}_{\geq N}$ and thus $||T(x) - T_n(x)|| = \lim_{m \to \infty} ||T_m(x) - T_n(x)|| \le \lim_{m \to \infty} \frac{\epsilon}{2} ||x|| = \frac{\epsilon}{2} ||x||.$ So $||T - T_n|| \leq \frac{\epsilon}{2} < \epsilon$. So $\lim_{n \to \infty} ||T - T_n|| = 0.$ So $\lim_{n \to \infty} T_n = T.$