3.2. Tutorial sheet, week of 08.08.2016

Review the page: http://www.ms.unimelb.edu.au/~ram/thoughtsandadvice.html, particularly the section on How to study for and take an exam.

Sample exam 1: MAST30026 Metric and Hilbert Spaces Sem II 2016

(1) (the spaces ℓ^{p})
(a) Carefully define the spaces ℓ^{p}.
(b) Show that $\ell^{1} \subseteq \ell^{2} \subseteq \ell^{3}$.
(c) Show that $\ell^{1} \neq \ell^{2} \neq \ell^{3}$.
(2) (complex bilinear positive definite forms) Let $V=\mathbb{C}$-span $\left\{e_{1}, e_{2}\right\}$ so that $V \cong \mathbb{C}^{2}$. Show that there exists $f: V \times V \rightarrow \mathbb{C}$ such that
(a) If $c_{1}, c_{2} \in \mathbb{C}$ and $v_{1}, v_{2}, w \in V$ then $f\left(c_{1} v_{1}+c_{2} v_{2}, w\right)=c_{1} f\left(v_{1}, w\right)+c_{2} f\left(v_{2}, w\right)$.
(b) If $c_{1}, c_{2} \in \mathbb{C}$ and $w_{1}, w_{2}, v \in V$ then $f\left(v, c_{1} w_{1}+c_{2} w_{2}\right)=c_{1} f\left(v, w_{1}\right)+c_{2} f\left(v, w_{2}\right)$.
(c) If $v \in V$ then $f(v, v) \in \mathbb{R}_{\geqslant 0}$,
(d) If $v \in V$ and $v \neq 0$ then there exists $w \in V$ such that $f(v, w) \neq 0$.
(3) (examples of topologies)
(a) Carefully define (in English) a topology.
(b) Carefully define (in proof machine) a topology.
(c) Let X be a set with 2 elements. Find (with proof) all topologies on X.
(4) (metric space topology and uniformity) Let (X, d) be a metric space.
(a) Carefully define the metric space topology and the metric space uniformity on X.
(b) Prove that the metric space topology is a topology on X.
(c) Prove that the metric space uniformity is a uniformity on X.
(d) Prove that the uniform space topology of X with the metric space uniformity is the same as the metric space topology on X.
(5) (continuous and uniformly continuous functions)
(a) Let $f: X \rightarrow Y$ be a uniformly continuous function. Show that $f: X \rightarrow Y$ is continuous.
(b) Let X and Y be metric spaces. Show that $f: X \rightarrow Y$ is a uniformly continuous function if and only if f satisfies
if $\epsilon \in \mathbb{R}_{>0}$ then there exists $\delta \in \mathbb{R}_{>0}$ such that
if $x, y \in X$ and $d(x, y)<\delta$ then $\rho(f(x), f(y))<\epsilon$.
(c) Let X and Y be metric spaces. Show that $f: X \rightarrow Y$ is a uniformly continuous function if and only if f satisfies
if $\epsilon \in \mathbb{R}_{>0}$ and $x \in X$ then there exists $\delta \in \mathbb{R}_{>0}$ such that
if $y \in X$ and $d(x, y)<\delta$ then $\rho(f(x), f(y))<\epsilon$.
(6) (the set $[1,2]$ and closures) Consider $\mathbb{R}_{\geqslant 0}, \mathbb{Q}_{\geqslant 0}$, and $\mathbb{Z}_{\geqslant 0}$ with the standard topology.
(a) Show that $[1,2]$ in $\mathbb{R}_{\geqslant 0}$ is not open.
(b) Show that $[1,2]$ in $\mathbb{Q} \geqslant 0$ is not open.
(c) Show that $[1,2]$ in $\mathbb{Z}_{\geqslant 0}$ is open.
(d) Give an example of a $B_{\epsilon}(x)$ in a metric space X such that

$$
\overline{B_{\epsilon}(x)} \neq\{y \in X \mid d(y, x) \leqslant \epsilon\} .
$$

3.3. Exercises and examples

(1) (complex positive definite bilinear forms are skew symmetric) Let V be a \mathbb{C}-vector space. Let $f: V \times V \rightarrow \mathbb{C}$ be a function such that
(a) If $c_{1}, c_{2} \in \mathbb{C}$ and $v_{1}, v_{2}, w \in V$ then $f\left(c_{1} v_{1}+c_{2} v_{2}, w\right)=c_{1} f\left(v_{1}, w\right)+c_{2} f\left(v_{2}, w\right)$.
(b) If $c_{1}, c_{2} \in \mathbb{C}$ and $w_{1}, w_{2}, v \in V$ then $f\left(v, c_{1} w_{1}+c_{2} w_{2}\right)=c_{1} f\left(v, w_{1}\right)+c_{2} f\left(v, w_{2}\right)$.
(c) If $v \in V$ then $f(v, v) \in \mathbb{R}_{\geqslant 0}$.

Show that
(A) If $v \in V$ then $f(v, v)=-f(v, v)$,
(B) If $v \in V$ then $f(v, v)=0$,
(C) If $v, w \in V$ then $f(v, w)=-f(w, v)$.
(2) (nondegenerate complex positive definite bilinear forms) Let $V=\mathbb{C}$-span $\left\{e_{1}, e_{2}\right\}$ so that $V \cong \mathbb{C}^{2}$. Show that there exists $f: V \times V \rightarrow \mathbb{C}$ such that
(a) If $c_{1}, c_{2} \in \mathbb{C}$ and $v_{1}, v_{2}, w \in V$ then $f\left(c_{1} v_{1}+c_{2} v_{2}, w\right)=c_{1} f\left(v_{1}, w\right)+c_{2} f\left(v_{2}, w\right)$.
(b) If $c_{1}, c_{2} \in \mathbb{C}$ and $w_{1}, w_{2}, v \in V$ then $f\left(v, c_{1} w_{1}+c_{2} w_{2}\right)=c_{1} f\left(v, w_{1}\right)+c_{2} f\left(v, w_{2}\right)$.
(c) If $v \in V$ then $f(v, v) \in \mathbb{R}_{\geqslant 0}$,
(d) If $v \in V$ and $v \neq 0$ then there exists $w \in V$ such that $f(v, w) \neq 0$.
(3) (complex symmetric positive definite bilinear forms are zero) Let V be a \mathbb{C}-vector space. Let $f: V \times V \rightarrow \mathbb{C}$ be a function such that
(a) If $c_{1}, c_{2} \in \mathbb{C}$ and $v_{1}, v_{2}, w \in V$ then $f\left(c_{1} v_{1}+c_{2} v_{2}, w\right)=c_{1} f\left(v_{1}, w\right)+c_{2} f\left(v_{2}, w\right)$.
(b) If $c_{1}, c_{2} \in \mathbb{C}$ and $w_{1}, w_{2}, v \in V$ then $f\left(v, c_{1} w_{1}+c_{2} w_{2}\right)=c_{1} f\left(v, w_{1}\right)+c_{2} f\left(v, w_{2}\right)$.
(c) If $v \in V$ then $f(v, v) \in \mathbb{R}_{\geqslant 0}$.
(d) If $v, w \in V$ then $f(v, w)=f(w, v)$.

Show that if $v, w \in V$ then $f(v, w)=0$.
(4) (nondegenerate real positive definite symmetric bilinear forms) Give an example of a nonzero \mathbb{R}-vector space and a function $f: V \times V \rightarrow \mathbb{R}$ such that
(a) If $c_{1}, c_{2} \in \mathbb{R}$ and $v_{1}, v_{2}, w \in V$ then $f\left(c_{1} v_{1}+c_{2} v_{2}, w\right)=c_{1} f\left(v_{1}, w\right)+c_{2} f\left(v_{2}, w\right)$.
(b) If $c_{1}, c_{2} \in \mathbb{R}$ and $w_{1}, w_{2}, v \in V$ then $f\left(v, c_{1} w_{1}+c_{2} w_{2}\right)=c_{1} f\left(v, w_{1}\right)+c_{2} f\left(v, w_{2}\right)$.
(c) If $v \in V$ then $f(v, v) \in \mathbb{R}_{\geqslant 0}$.
(d) If $v, w \in V$ then $f(v, w)=f(w, v)$.
(e) If $v \in V$ and $v \neq 0$ then there exists $w \in V$ such that $f(v, w) \neq 0$.

