Assignment 1

MAST30026 Metric and Hilbert Spaces Semester II 2017 Lecturer: Arun Ram to be turned in before 2pm on 7 September 2017

(1) (diameters and distance to A) Let (X, d) be a metric space. Let $A \subseteq X$ with $A \neq \emptyset$. The diameter of A is

 $diam(A) = \sup\{d(x, y) \mid x, y \in A\} \quad and \quad d(x, A) = \inf\{d(x, a) \mid a \in A\}$

is the distance from x to A.

(a) Let A and B be bounded subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that

 $\operatorname{diam}(A \cup B) \leqslant \operatorname{diam}(A) + \operatorname{diam}(B).$

What can you say if A and B are disjoint?

- (b) Prove that $\overline{A} = \{x \in X \mid d(x, A) = 0\}.$
- (c) Prove that if $x, y \in X$ then $|d(x, A) d(y, A)| \leq d(x, y)$. [Hint: first show that $d(x, A) \leq d(x, y) + d(y, A)$.]
- (d) Show that the function $f: X \to \mathbb{R}$ defined by f(x) = d(x, A) is continuous.
- (e) Assume $x \in X$ and $x \notin \overline{A}$. Let

$$U = \{ y \in X : d(y, A) < d(x, A) \}.$$

Show that U is an open set in $X, U \supseteq \overline{A}$ and $x \notin U$.

- (2) (product topology) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let \mathcal{T} be the product topology on $X \times Y$. Let $\mathcal{N}(p)$ denote the neighborhood filter of p.
 - (a) Provide an example (with proof) of topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) and an open set Z in $X \times Y$ such that there do not exist open sets U in Xand V in Y with $Z = U \times V$.
 - (b) Let $x \in X$ and $y \in Y$. Show that

 $\mathcal{N}((x,y)) = \{ Z \subseteq X \times Y \mid \text{there exist } U \in \mathcal{N}(x) \text{ and } V \in \mathcal{N}(y) \text{ with } Z \supseteq U \times V \}.$

- (c) Show that if $A \subseteq X$ and $B \subseteq Y$, then $\overline{A} \times \overline{B} = \overline{A \times B}$.
- (d) Prove that if X and Y are path connected, then $X \times Y$ is also path connected.

- (3) (Uniform spaces are almost metric spaces) Let X be a set. A pseudometric on X is a function $d: X \times X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that
 - (a) If $x \in X$ then d(x, x) = 0,
 - (b) If $x, y \in X$ then d(x, y) = d(y, x),
 - (c) If $x, y, z \in X$ then $d(x, y) \leq d(x, z) + d(z, y)$.

For $\epsilon \in \mathbb{R}_{>0}$ let $B_{\epsilon} = \{(x_1, x_2) \in X \times X \mid d(x_1, x_2) \leq \epsilon\}.$

For $E \subseteq X \times X$ let $\sigma(E) = \{(y, x) \mid (x, y) \in E\}.$

(a) Let X be a set and let $d: X \times X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a pseudometric on X. Let

 $\mathcal{X} = \{ V \subseteq X \times X \mid \text{there exists } \epsilon \in \mathbb{R}_{>0} \text{ such that } V \supseteq B_{\epsilon} \}.$

Show that \mathcal{X} is a uniformity on X.

(b) Let (X, \mathcal{X}) be a uniform space. Let $E \in \mathcal{X}$ and $x \in X$. Carefully define the *E*-neighborhood of x and the neighborhood filter of x and prove that

$$\mathcal{N}(x) = \{ B_E(x) \mid E \in \mathcal{X} \}.$$

(c) Let (X, \mathcal{X}) be a uniform space. For $E \in \mathcal{X}$, choose $E_1, E_2, \ldots \in \mathcal{X}$ such that

 $\sigma(E_n) = E_n, \quad E_1 \subseteq E, \quad \text{and} \quad E_{n+1} \times_X E_{n+1} \subseteq E_n.$

and let

 $\mathcal{X}_E = \{ D \subseteq X \times X \mid \text{there exists } k \in \mathbb{Z}_{>0} \text{ with } D \supseteq E_k \}.$

- (ca) Show that \mathcal{X}_E is a uniformity on X and $\mathcal{X}_E \subseteq \mathcal{X}$.
- (cb) Show that $\mathcal{X} = \sup\{\mathcal{X}_E \mid E \in \mathcal{X}\}.$
- (d) Let $E \in \mathcal{X}$, let E_1, E_2, \ldots be as in (c) and let $U_1, U_2, \ldots \in \mathcal{X}_E$ such that

$$\sigma(U_n) = U_n, \quad U_1 \subseteq E_1, \quad \text{and} \quad U_{n+1} \times_X U_{n+1} \times_X U_{n+1} \subseteq U_n \cap E_n.$$

Define $g_E \colon X \times X \to \mathbb{R}$ by

$$g_E(x,y) = \begin{cases} 1, & \text{if } (x,y) \notin U_1, \\ 2^{-k}, & \text{if } (x,y) \in U_1, (x,y) \in U_2, \dots, (x,y) \in U_k \text{ and } (x,y) \notin U_{k+1}, \\ 0, & \text{if } (x,y) \in U_n \text{ for } n \in \mathbb{Z}_{>0}. \end{cases}$$

Show that

$$g_E(x,y) = g_E(y,x), \quad g_E(x,y) \in \mathbb{R}_{\geq 0}, \text{ and } \text{ if } x \in X \text{ then } g_E(x,x) = 0.$$

(e) Define $d_E \colon X \times X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ by

$$d_E(x,y) = \inf\{g_E(x,z_1) + \dots + g_E(z_{p-1},y) \mid p \in \mathbb{Z}_{>0}, \ z_1,\dots,z_{p-1}, z_p \in X, \ z_p = y\}$$

- (ea) Show that if $x, y \in X$ then $\frac{1}{2}g_E(x, y) \leq d_E(x, y) \leq g_E(x, y)$.
- (eb) Show that d_E is a pseudometric.
- (ec) Show that the uniformity defined by d_E (as in part (b)) is equal to \mathcal{X}_E .
- (f) Give an example (with proof) of a set X and a pseudometric on X which is not a metric on X.
- (4) (Continuous and uniformly continuous functions)
 - (a) Show that the composition of continuous functions is continuous.
 - (b) Show that the composition of uniformly continuous functions is uniformly continuous.
 - (c) Give an example of a bijective continuous function such that the inverse function is not continuous.
- (5) (posets and topological spaces) Let X be a set. A preorder on X is a relation \leq on X such that
 - (A) If $a \in X$ then $a \leq a$,
 - (B) If $a, b, c \in X$ and $a \leq b$ and $b \leq c$ then $a \leq c$.

Let (X, \leq_X) and $Y, \leq_Y)$ be preordered sets. A monotone function is a function $f: X \to Y$ such that

if $x_1, x_2 \in X$ and $x_1 \leq x_2$ then $f(x_1) \leq f(x_2)$.

- (a) Let $X = \{1, 2, 3\}$. Carefully describe all preorders on X and all topologies on X.
- (b) Let (X, \leq) be a preordered set.

 $\mathcal{T}_X = \{ U \subseteq X \mid \text{if } x \in U \text{ and } y \in X \text{ and } x \leq y \text{ then } y \in U \}.$

Show that \mathcal{T} is a topology on X.

(c) Let (Y, \mathcal{T}) be a topological space. Define a relation \leq on Y by

$$x \leqslant y \quad \text{if } x \in \overline{\{y\}}$$

where \overline{A} is the closure of A. Show that \leq is a preorder on Y.

(d) Define a function \mathcal{F} : {topological spaces} \rightarrow {preordered sets} by

 $\mathcal{F}((Y,\mathcal{T})) = (Y, \leqslant),$ where \leqslant is as defined in part (b).

Show that if $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is a continuous function then $f: \mathcal{F}(X) \to \mathcal{F}(Y)$ is monotone.

(e) Define a function \mathcal{G} : {preordered sets} \rightarrow topological spaces} by

 $\mathcal{G}((X, \leq)) = (X, \mathcal{T}),$ where \mathcal{T} is as defined in part (c).

Show that if $f: (X, \leq_X) \to (Y, \leq_Y)$ is monotone then $f: \mathcal{G}(X) \to \mathcal{G}(Y)$ is continuous.

- (f) Show that if (X, \leq) is a preordered set then $\mathcal{F}(\mathcal{G}(X, \leq)) = (X, \leq)$.
- (g) Show that if (Y, \mathcal{T}) is a topological space then $\mathcal{G}(\mathcal{F}(Y))$ is not necessarily equal to (Y, \mathcal{T}) .
- (h) Show that if (Y, \mathcal{T}) is a topological space and X is finite then $\mathcal{G}(\mathcal{F}(Y)) = (Y, \mathcal{T})$.
- (6) (pointwise convergence does not imply uniform convergence) Let (X, d) and (C, ρ) be metric spaces. Let

$$F = \{ \text{functions } f \colon X \to C \}, \qquad (f_1, f_2, \dots) \text{ a sequence in } F$$

and let $f: X \to C$ be a function.

- (a) Show that if $(f_1, f_2, ...)$ converges uniformly to f then $(f_1, f_2, ...)$ converges pointwise to f.
- (b) Let $X = C = \mathbb{R}_{[0,1]} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ with metric given by $d(x,y) = \rho(x,y) = |x-y|$. For $n \in \mathbb{Z}_{>0}$ let

$$\begin{array}{rccc} f_n \colon & \mathbb{R}_{[0,1]} & \to & \mathbb{R}_{[0,1]} \\ & x & \mapsto & x^n \end{array} \quad \text{ and let } f \colon \mathbb{R}_{[0,1]} \to \mathbb{R}_{[0,1]} \end{array}$$

be given by

$$f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x = 1. \end{cases}$$

Carefully graph f_1, f_2, f_3, f_4 and f. Show that $(f_1, f_2, ...)$ converges pointwise to f but does not converge uniformly to f.

(7) (Connected sets) Let (X, \mathcal{T}) be a topological space and let $E \subseteq X$. The set E is *connected* if there do not exist open sets U and V in X such that

$$U \cap A \neq \emptyset$$
, $V \cap A \neq \emptyset$, $U \cup V \supseteq E$ and $(U \cap V) \cap E = \emptyset$.

The set E is *path connected* if E satisfies

if
$$x, y \in E$$
 then there exists a continuous function
 $f: \mathbb{R}_{[0,1]} \to E$ with $f(0) = x$ and $f(1) = y$.

- (a) Show that if E is path connected then E is connected.
- (b) Give an example (with proof) of a connected set E which is not path connected.
- (c) Let $\{0,1\}$ have the discrete topology and let A have the subspace topology. Show that A is connected if and only if there does not exist a continuous surjective function $f: A \to \{0, 1\}$.
- (d) Show that if $A \subseteq X$ is connected then \overline{A} is connected.

(8) (Banach fixed point theorem and Picard iteration) Let (X, d) be a metric space. A contraction mapping is a function $f: X \to X$ such that there exists $\alpha \in \mathbb{R}_{>0}$ such that $\alpha < 1$ and

if
$$x, y \in X$$
 then $d(f(x), f(y)) \leq \alpha d(x, y)$.

A fixed point of $f: X \to X$ is an element $x \in X$ such that f(x) = x.

Picard iteration is a method for solving equations of the form f(x) = x where $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. The process is to let

$$a_1 =$$
 your choice, $a_2 = f(a_1), \quad a_3 = f(a_2), \quad \dots,$

and compute $a = \lim_{n \to \infty} a_n$.

(a) Let (X, d) be a complete metric space and let $f: X \to X$ be a contraction mapping. Let $x \in X$ and let x_1, x_2, \ldots be the sequence

$$x_1 = f(x), \quad x_2 = f(f(x)), \quad x_3 = f(f(f(x))), \quad \dots$$

Show that the sequence x_1, x_2, \ldots converges and $p = \lim_{n \to \infty} x_n$ is the unique fixed point of f.

- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $a_1 \in \mathbb{R}$ and let $a_{n+1} = f(a_n)$. Show that if the sequence (a_1, a_2, \ldots) converges and $a = \lim_{n \to \infty} a_n$ then f(a) = a.
- (c) Rewrite the equation $x^3 x 1 = 0$ as x = f(x), where $f(x) = \frac{1}{x^2+1}$. Let $a_1 = \frac{1}{2}$ and use Picard iteration to compute a solution to (5 decimal places) to $x^3 x 1 = 0$. Verify that your solution is correct
- (d) Rewrite the equation $x^3 x 1 = 0$ in the form x = f(x), where $f(x) = 1 x^3$. Let $a_1 = \frac{1}{2}$ and use Picard iteration to compute a solution to (5 decimal places) to $x^3 - x - 1 = 0$. Verify that your solution is correct.
- (e) Explain carefully how parts (c) and (d) provide examples and insight into the Banach fixed point theorem.
- (9) (The Cantor set)
 - (a) Show that the Cantor set is the set of real numbers with $\frac{1}{3}$ -adic expansion with no 1s.
 - (b) Show that $Card(C) = Card(\mathbb{R})$.
 - (c) Show that if $x \in C$ then there exists $\epsilon \in \mathbb{R}_{>0}$ such that $(x \epsilon, x + \epsilon) \cap C = \{x\}$.
 - (d) Show that C is totally disconnected.
 - (e) Show that C is closed.
 - (f) Show that C is compact.