Assignment 1

MAST30026 Metric and Hilbert Spaces Semester II 2017
 Lecturer: Arun Ram
 to be turned in before 2pm on 7 September 2017

(1) (diameters and distance to A) Let (X, d) be a metric space. Let $A \subseteq X$ with $A \neq \emptyset$. The diameter of A is

$$
\operatorname{diam}(A)=\sup \{d(x, y) \mid x, y \in A\} \quad \text { and } \quad d(x, A)=\inf \{d(x, a) \mid a \in A\}
$$

is the distance from x to A.
(a) Let A and B be bounded subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that

$$
\operatorname{diam}(A \cup B) \leqslant \operatorname{diam}(A)+\operatorname{diam}(B) .
$$

What can you say if A and B are disjoint?
(b) Prove that $\bar{A}=\{x \in X \mid d(x, A)=0\}$.
(c) Prove that if $x, y \in X$ then $|d(x, A)-d(y, A)| \leqslant d(x, y)$.
[Hint: first show that $d(x, A) \leqslant d(x, y)+d(y, A)$.]
(d) Show that the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=d(x, A)$ is continuous.
(e) Assume $x \in X$ and $x \notin \bar{A}$. Let

$$
U=\{y \in X: d(y, A)<d(x, A)\} .
$$

Show that U is an open set in $X, U \supseteq \bar{A}$ and $x \notin U$.
(2) (product topology) Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces and let \mathcal{T} be the product topology on $X \times Y$. Let $\mathcal{N}(p)$ denote the neighborhood filter of p.
(a) Provide an example (with proof) of topological spaces $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ and an open set Z in $X \times Y$ such that there do not exist open sets U in X and V in Y with $Z=U \times V$.
(b) Let $x \in X$ and $y \in Y$. Show that
$\mathcal{N}((x, y))=\{Z \subseteq X \times Y \mid$ there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ with $Z \supseteq U \times V\}$.
(c) Show that if $A \subseteq X$ and $B \subseteq Y$, then $\bar{A} \times \bar{B}=\overline{A \times B}$.
(d) Prove that if X and Y are path connected, then $X \times Y$ is also path connected.
(3) (Uniform spaces are almost metric spaces) Let X be a set. A pseudometric on X is a function $d: X \times X \rightarrow \mathbb{R}_{\geqslant 0} \cup\{\infty\}$ such that
(a) If $x \in X$ then $d(x, x)=0$,
(b) If $x, y \in X$ then $d(x, y)=d(y, x)$,
(c) If $x, y, z \in X$ then $d(x, y) \leqslant d(x, z)+d(z, y)$.

For $\epsilon \in \mathbb{R}_{>0}$ let $B_{\epsilon}=\left\{\left(x_{1}, x_{2}\right) \in X \times X \mid d\left(x_{1}, x_{2}\right) \leqslant \epsilon\right\}$.
For $E \subseteq X \times X$ let $\sigma(E)=\{(y, x) \mid(x, y) \in E\}$.
(a) Let X be a set and let $d: X \times X \rightarrow \mathbb{R}_{\geqslant 0} \cup\{\infty\}$ be a pseudometric on X. Let

$$
\mathcal{X}=\left\{V \subseteq X \times X \mid \text { there exists } \epsilon \in \mathbb{R}_{>0} \text { such that } V \supseteq B_{\epsilon}\right\}
$$

Show that \mathcal{X} is a uniformity on X.
(b) Let (X, \mathcal{X}) be a uniform space. Let $E \in \mathcal{X}$ and $x \in X$. Carefully define the E-neighborhood of x and the neighborhood filter of x and prove that

$$
\mathcal{N}(x)=\left\{B_{E}(x) \mid E \in \mathcal{X}\right\} .
$$

(c) Let (X, \mathcal{X}) be a uniform space. For $E \in \mathcal{X}$, choose $E_{1}, E_{2}, \ldots \in \mathcal{X}$ such that

$$
\sigma\left(E_{n}\right)=E_{n}, \quad E_{1} \subseteq E, \quad \text { and } \quad E_{n+1} \times_{X} E_{n+1} \subseteq E_{n}
$$

and let

$$
\mathcal{X}_{E}=\left\{D \subseteq X \times X \mid \text { there exists } k \in \mathbb{Z}_{>0} \text { with } D \supseteq E_{k}\right\}
$$

(ca) Show that \mathcal{X}_{E} is a uniformity on X and $\mathcal{X}_{E} \subseteq \mathcal{X}$.
(cb) Show that $\mathcal{X}=\sup \left\{\mathcal{X}_{E} \mid E \in \mathcal{X}\right\}$.
(d) Let $E \in \mathcal{X}$, let E_{1}, E_{2}, \ldots be as in (c) and let $U_{1}, U_{2}, \ldots \in \mathcal{X}_{E}$ such that

$$
\sigma\left(U_{n}\right)=U_{n}, \quad U_{1} \subseteq E_{1}, \quad \text { and } \quad U_{n+1} \times_{X} U_{n+1} \times_{X} U_{n+1} \subseteq U_{n} \cap E_{n}
$$

Define $g_{E}: X \times X \rightarrow \mathbb{R}$ by

$$
g_{E}(x, y)= \begin{cases}1, & \text { if }(x, y) \notin U_{1}, \\ 2^{-k}, & \text { if }(x, y) \in U_{1},(x, y) \in U_{2}, \ldots,(x, y) \in U_{k} \text { and }(x, y) \notin U_{k+1}, \\ 0, & \text { if }(x, y) \in U_{n} \text { for } n \in \mathbb{Z}_{>0} .\end{cases}
$$

Show that

$$
g_{E}(x, y)=g_{E}(y, x), \quad g_{E}(x, y) \in \mathbb{R}_{\geqslant 0}, \quad \text { and } \quad \text { if } x \in X \text { then } g_{E}(x, x)=0
$$

(e) Define $d_{E}: X \times X \rightarrow \mathbb{R}_{\geqslant 0} \cup\{\infty\}$ by

$$
d_{E}(x, y)=\inf \left\{g_{E}\left(x, z_{1}\right)+\cdots+g_{E}\left(z_{p-1}, y\right) \mid p \in \mathbb{Z}_{>0}, z_{1}, \ldots, z_{p-1}, z_{p} \in X, z_{p}=y\right\}
$$

(ea) Show that if $x, y \in X$ then $\frac{1}{2} g_{E}(x, y) \leqslant d_{E}(x, y) \leqslant g_{E}(x, y)$.
(eb) Show that d_{E} is a pseudometric.
(ec) Show that the uniformity defined by d_{E} (as in part (b)) is equal to \mathcal{X}_{E}.
(f) Give an example (with proof) of a set X and a pseudometric on X which is not a metric on X.
(4) (Continuous and uniformly continuous functions)
(a) Show that the composition of continuous functions is continuous.
(b) Show that the composition of uniformly continuous functions is uniformly continuous.
(c) Give an example of a bijective continuous function such that the inverse function is not continuous.
(5) (posets and topological spaces) Let X be a set. A preorder on X is a relation \leqslant on X such that
(A) If $a \in X$ then $a \leqslant a$,
(B) If $a, b, c \in X$ and $a \leqslant b$ and $b \leqslant c$ then $a \leqslant c$.

Let $\left(X, \leqslant_{X}\right)$ and $\left.Y, \leqslant_{Y}\right)$ be preordered sets. A monotone function is a function $f: X \rightarrow Y$ such that

$$
\text { if } x_{1}, x_{2} \in X \text { and } x_{1} \leqslant x_{2} \text { then } f\left(x_{1}\right) \leqslant f\left(x_{2}\right) .
$$

(a) Let $X=\{1,2,3\}$. Carefully describe all preorders on X and all topologies on X.
(b) Let (X, \leqslant) be a preordered set.

$$
\mathcal{T}_{X}=\{U \subseteq X \mid \text { if } x \in U \text { and } y \in X \text { and } x \leqslant y \text { then } y \in U\}
$$

Show that \mathcal{T} is a topology on X.
(c) Let (Y, \mathcal{T}) be a topological space. Define a relation \leqslant on Y by

$$
x \leqslant y \quad \text { if } x \in \overline{\{y\}}
$$

where \bar{A} is the closure of A. Show that \leqslant is a preorder on Y.
(d) Define a function \mathcal{F} : \{topological spaces $\} \rightarrow\{$ preordered sets $\}$ by

$$
\mathcal{F}((Y, \mathcal{T}))=(Y, \leqslant), \quad \text { where } \leqslant \text { is as defined in part }(\mathrm{b})
$$

Show that if $f:\left(X, \mathcal{T}_{X}\right) \rightarrow\left(Y, \mathcal{T}_{Y}\right)$ is a continuous function then $f: \mathcal{F}(X) \rightarrow$ $\mathcal{F}(Y)$ is monotone.
(e) Define a function \mathcal{G} : \{preordered sets $\} \rightarrow$ topological spaces $\}$ by

$$
\mathcal{G}((X, \leqslant))=(X, \mathcal{T}), \quad \text { where } \mathcal{T} \text { is as defined in part (c). }
$$

Show that if $f:\left(X, \leqslant_{X}\right) \rightarrow\left(Y, \leqslant_{Y}\right)$ is monotone then $f: \mathcal{G}(X) \rightarrow \mathcal{G}(Y)$ is continuous.
(f) Show that if (X, \leqslant) is a preordered set then $\mathcal{F}(\mathcal{G}(X, \leqslant))=(X, \leqslant)$.
(g) Show that if (Y, \mathcal{T}) is a topological space then $\mathcal{G}(\mathcal{F}(Y))$ is not necessarily equal to (Y, \mathcal{T}).
(h) Show that if (Y, \mathcal{T}) is a topological space and X is finite then $\mathcal{G}(\mathcal{F}(Y))=$ (Y, \mathcal{T}).
(6) (pointwise convergence does not imply uniform convergence) Let (X, d) and (C, ρ) be metric spaces. Let

$$
F=\{\text { functions } f: X \rightarrow C\}, \quad\left(f_{1}, f_{2}, \ldots\right) \text { a sequence in } F
$$

and let $f: X \rightarrow C$ be a function.
(a) Show that if $\left(f_{1}, f_{2}, \ldots\right)$ converges uniformly to f then $\left(f_{1}, f_{2}, \ldots\right)$ converges pointwise to f.
(b) Let $X=C=\mathbb{R}_{[0,1]}=\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 1\}$ with metric given by $d(x, y)=$ $\rho(x, y)=|x-y|$. For $n \in \mathbb{Z}_{>0}$ let

$$
\begin{aligned}
f_{n}: \quad \mathbb{R}_{[0,1]} & \rightarrow \mathbb{R}_{[0,1]} \\
x & \mapsto x^{n}
\end{aligned} \quad \text { and let } f: \mathbb{R}_{[0,1]} \rightarrow \mathbb{R}_{[0,1]}
$$

be given by

$$
f(x)= \begin{cases}0, & \text { if } 0 \leqslant x<1 \\ 1, & \text { if } x=1\end{cases}
$$

Carefully graph $f_{1}, f_{2}, f_{3}, f_{4}$ and f. Show that $\left(f_{1}, f_{2}, \ldots\right)$ converges pointwise to f but does not converge uniformly to f.
(7) (Connected sets) Let (X, \mathcal{T}) be a topological space and let $E \subseteq X$. The set E is connected if there do not exist open sets U and V in X such that

$$
U \cap A \neq \emptyset, \quad V \cap A \neq \emptyset, \quad U \cup V \supseteq E \quad \text { and } \quad(U \cap V) \cap E=\emptyset .
$$

The set E is path connected if E satisfies

$$
\begin{gathered}
\text { if } x, y \in E \text { then there exists a continuous function } \\
f: \mathbb{R}_{[0,1]} \rightarrow E \text { with } f(0)=x \text { and } f(1)=y .
\end{gathered}
$$

(a) Show that if E is path connected then E is connected.
(b) Give an example (with proof) of a connected set E which is not path connected.
(c) Let $\{0,1\}$ have the discrete topology and let A have the subspace topology. Show that A is connected if and only if there does not exist a continuous surjective function $f: A \rightarrow\{0,1\}$.
(d) Show that if $A \subseteq X$ is connected then \bar{A} is connected.
(8) (Banach fixed point theorem and Picard iteration) Let (X, d) be a metric space. A contraction mapping is a function $f: X \rightarrow X$ such that there exists $\alpha \in \mathbb{R}_{>0}$ such that $\alpha<1$ and

$$
\text { if } x, y \in X \quad \text { then } \quad d(f(x), f(y)) \leqslant \alpha d(x, y)
$$

A fixed point of $f: X \rightarrow X$ is an element $x \in X$ such that $f(x)=x$.
Picard iteration is a method for solving equations of the the form $f(x)=x$ where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. The process is to let

$$
a_{1}=\text { your choice }, \quad a_{2}=f\left(a_{1}\right), \quad a_{3}=f\left(a_{2}\right), \quad \ldots,
$$

and compute $a=\lim _{n \rightarrow \infty} a_{n}$.
(a) Let (X, d) be a complete metric space and let $f: X \rightarrow X$ be a contraction mapping. Let $x \in X$ and let x_{1}, x_{2}, \ldots be the sequence

$$
x_{1}=f(x), \quad x_{2}=f(f(x)), \quad x_{3}=f(f(f(x))), \quad \ldots
$$

Show that the sequence x_{1}, x_{2}, \ldots converges and $p=\lim _{n \rightarrow \infty} x_{n}$ is the unique fixed point of f.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Let $a_{1} \in \mathbb{R}$ and let $a_{n+1}=f\left(a_{n}\right)$. Show that if the sequence $\left(a_{1}, a_{2}, \ldots\right)$ converges and $a=\lim _{n \rightarrow \infty} a_{n}$ then $f(a)=a$.
(c) Rewrite the equation $x^{3}-x-1=0$ as $x=f(x)$, where $f(x)=\frac{1}{x^{2}+1}$. Let $a_{1}=\frac{1}{2}$ and use Picard iteration to compute a solution to (5 decimal places) to $x^{3}-x-1=0$. Verify that your solution is correct
(d) Rewrite the equation $x^{3}-x-1=0$ in the form $x=f(x)$, where $f(x)=1-x^{3}$. Let $a_{1}=\frac{1}{2}$ and use Picard iteration to compute a solution to (5 decimal places) to $x^{3}-x-1=0$. Verify that your solution is correct.
(e) Explain carefully how parts (c) and (d) provide examples and insight into the Banach fixed point theorem.

(9) (The Cantor set)

(a) Show that the Cantor set is the set of real numbers with $\frac{1}{3}$-adic expansion with no 1 s .
(b) Show that $\operatorname{Card}(C)=\operatorname{Card}(\mathbb{R})$.
(c) Show that if $x \in C$ then there exists $\epsilon \in \mathbb{R}_{>0}$ such that $(x-\epsilon, x+\epsilon) \cap C=\{x\}$.
(d) Show that C is totally disconnected.
(e) Show that C is closed.
(f) Show that C is compact.

