Assignment 2

MAST30026 Metric and Hilbert Spaces Semester II 2017 Lecturer: Arun Ram to be turned in before 2pm on 12 October 2016

- (1) $(\ell^p \text{ spaces})$ Let $p \in \mathbb{R}_{\geq 1}$.
 - (a) Carefully define ℓ^p .
 - (b) Prove that ℓ^p is a normed vector space.
 - (c) Prove that ℓ^p is not an inner product space unless p = 2.
- (2) (The *p*-norms on $V = \mathbb{R}^2$) Let $p \in \mathbb{R}_{>0}$.
 - (a) Carefully define the *p*-norm $\| \|_p$ on \mathbb{R}^2 .
 - (b) Draw pictures of the open ball of radius 1 centred at (0,0) in the spaces $(\mathbb{R}^2, \| \|_3), (\mathbb{R}^2, \| \|_2), (\mathbb{R}^2, \| \|_1), (\mathbb{R}^2, \| \|_{\frac{1}{2}}), \text{ and } (\mathbb{R}^2, \| \|_{\frac{1}{2}}),$
 - (c) Show that all the spaces $(\mathbb{R}^2, \| \|_p)$ have the same topology.
 - (d) Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}$ be a linear functional, say $\varphi(x_1, x_2) = ax_1 + bx_2$. Give a direct proof that
 - (i) If \mathbb{R}^2 has the norm $|| ||_1$ then the corresponding operator norm is $||\varphi||_{\infty} = \max\{|a|, |b|\}.$
 - (ii) If \mathbb{R}^2 has the norm $\| \|_{\infty}$ then the corresponding operator norm is $\|\varphi\|_1 = |a| + |b|.$
 - (iii) If $p \in \mathbb{R}_{>1}$ and \mathbb{R}^2 has the norm $|| ||_p$ then the corresponding operator norm is $\|\varphi\|_q = (|a|^q + |b|^q)^{1/q}$, with $\frac{1}{p} + \frac{1}{q} = 1$.
- (3) (The *p*-adic numbers) Let $p \in \mathbb{Z}_{>0}$ be prime. Define

$$\mathbb{Q}_p = \{ a_\ell p^{-\ell} + a_{-\ell+1} p^{-\ell+1} + \dots \mid \ell \in \mathbb{Z}, \ a_i \in \{0, 1, \dots, p-1\} \}, \quad \text{and} \\
\mathbb{Z}_p = \{ a_0 + a_1 p + a_2 p^2 + \dots \mid a_i \in \{0, 1, \dots, p-1\} \}.$$

Review the definition of addition, multiplication and $| |_p$ on \mathbb{Q}_p .

(a) Show that if $x \in \mathbb{Q}_p$ then there exists $-x \in \mathbb{Q}_p$.

- (b) Prove that if $x \in \mathbb{Z}_p$ then $-x \in \mathbb{Z}_p$.
- (c) Show that if $x \in \mathbb{Q}_p$ and $x \neq 0$ then there exists $x^{-1} \in \mathbb{Q}_p$.
- (d) Show that there exists $z \in \mathbb{Q}_p$ such that $z^{p-1} = 1$.
- (e) Prove that $| |_p \colon \mathbb{Q}_p \to \mathbb{Q}_p$ is a metric on \mathbb{Q}_p .
- (f) Show that \mathbb{Z}_p is a compact subset of \mathbb{Q}_p .
- (g) Show that \mathbb{Z}_p is a open subset of \mathbb{Q}_p .
- (4) (Power iteration) Let

	/ 7465	1288	-1058	528	-222	30
A =	-25894	-4218	3676	-1839	744	-120
	-127642	-20896	18119	-9061	3677	-581
	-386350	-64150	54820	-27400	11225	-1705
	-200742	-32626	28500	-14259	5760	-935
	66848	11264	-9480	4736	-1960	285 /

- (a) Use Wolfram alpha or some analogous to determine the eigenvalues and the Jordan form of A. Carefully and thoroughly document the steps that you take and your intermediate results.
- (b) For each eigenvalue λ of A compute the matrices

$$\frac{1}{\lambda}A - 1$$
, $\left(\frac{1}{\lambda}A - 1\right)^2$, $\left(\frac{1}{\lambda}A - 1\right)^3$ and $E_{\lambda} = \lim_{n \to \infty} (\frac{1}{\lambda}A - 1)^n$.

- (c) Show that $E_{\lambda}^2 = E_{\lambda}, (1 E_{\lambda})^2 = (1 E_{\lambda}).$
- (d) Let V be a separable Hilbert space and let $T: V \to V$ be a diagonalisable linear transformation with real eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots$. Let λ be the largest eigenvalue of T and let

$$P: V \to V$$
 be defined by $P = \lim_{n \to \infty} \left(\frac{1}{\lambda}T - 1\right)^n$.

Show that $PV = V_{\lambda}$, the λ -eigenspace of V.

- (5) (Baire category theorem)
 - (a) Carefully state the Baire theorem for open dense sets.
 - (b) Carefully prove the Baire theorem for open dense sets.
 - (c) Give an example illustrating and illuminating the Baire theorem for open dense sets.

- (6) (Schauder bases are total sets) A metric space (X, d) is *separable* if it has a countable dense subset. Let (V, || ||) be a normed vector space. A *total set* in a normed vector space (V, || ||) is a subset $A \subseteq V$ such that $\overline{\mathbb{K}}$ -span(A) = V. Let e_i be the vector in \mathbb{R}^{∞} with 1 in the *i*th coordinate and 0 elsewhere.
 - (a) Show that a Schauder basis of V is a total set of V.
 - (b) Show that if V has a Schauder basis then V is separable.
 - (c) Show that if $p \in \mathbb{R}_{\geq 1}$ then (e_1, e_2, \ldots) is a Schauder basis of ℓ^p .
 - (d) Show that (e_1, e_2, \ldots) is not a Schauder basis of ℓ^{∞} .
- (7) (Gram Schmidt) Prove that $(a_1, a_2, ...)$ is an orthonormal sequence. Prove that the denominator is the *n*th principal minor of A. Let V be an inner product space.
 - (a) Show that an orthonormal sequence (a_1, a_2, \ldots) in V is linearly independent.
 - (b) Let (v_1, v_2, \ldots) be a sequence of linearly independent vectors in V and let

$$a_1 = \frac{v_1}{\|v_1\|},$$
 and $a_{n+1} = \frac{v_{n+1} - \langle v_{n+1}, a_1 \rangle a_1 - \dots - \langle v_{n+1}, a_n \rangle a_n}{\|v_{n+1} - \langle v_{n+1}, a_1 \rangle a_1 - \dots - \langle v_{n+1}, a_n \rangle a_n\|}.$

Show that (a_1, a_2, \ldots) is an orthonormal sequence of linearly independent vectors in V.

(c) Show that

$$\|v_{n+1} - \langle v_{n+1}, a_1 \rangle a_1 - \dots - \langle v_{n+1}, a_n \rangle a_n\| = \det(A_n),$$

where $A_n = (\langle v_i, v_j \rangle)_{1 \le i,j \le n}$.

- (8) (matrices of linear transformations and adjoints) Let $n \in \mathbb{Z}_{>0}$ and let V be a Hilbert space with orthonormal basis e_1, e_2, \ldots, e_n . Let $T: V \to V$ be a linear transformation. Let A be the matrix of T with respect to the basis e_1, \ldots, e_n and let B be the matrix of T^* with respect to the basis e_1, \ldots, e_n . Let a_{ij} be the (i, j)-entry of A. Show that
 - (a) Show that $B = \overline{A}^t$.
 - (b) Show that T is Hermitian if and only if $A = \overline{A}^t$.
 - (c) Show that T is unitary if and only if $A\overline{A}^t = 1$.
 - (d) Show that T is self adjoint if and only if $A = \overline{A}^t$.
 - (e) Show that T is positive if and only if A satisfies

If
$$k \in \{1, \ldots, n\}$$
 and $A_k = (a_{ij})_{1 \le i, j \le k}$ then $\det(A_k) \in \mathbb{R}_{\ge 0}$.

(f) Show that $||T^*|| = ||T||$.