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Let E be an algebraic (or holomorphic) vectorbundle over the Riemann sphere p’(C). Then 

Grothendieck proved that E splits into a sum of line bundles E =@ L, and that the isomorphism 

classes of the Li are (up to order) uniquely determined by E. The L, in turn are classified by an 

integer (their Chern numbers) so that m-dimensional vectorbundles over I”(C) are classified by 

an m-tuple of integers 

K(E)=(K~(E), . . ..K.(E)), K,(E)zK~(E)z . ..~K.,,(E). K,(E)EZ. 

In this short note we present a completely elementary proof of these facts which, as it turns out, 

works over any field k. 

1. Introduction 

Let E be a holomorphic (or algebraic) vectorbundle over the Riemann sphere 
IpI( (By [2] holomorphic and algebraic vectorbundles over iP’(C) amount to the 
same thing). In [l] Grothendieck proved that E splits into a sum of line bundles 
E= @ L; and that the isomorphism classes of the Li are (up to order) uniquely 
determined by E. The line bundles Lj in turn are classified by an integer (their first 
Chern number) so that m-dimensional vectorbundles over p’(C) are classified by an 
m-tuple of integers 

K(E)=(KI(E),...,K,(E)), K~(E)Z***ZK,(E), KiEZ. 

* This work was done in part while the first author was visiting Case Institute of Technology. 

** Supported in part by NASA Grant #2384, ONR Contract #N00014-80C-0199 and DOE Contract 

#DE-ACOl-80RAS256. 
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Below we give a completely elementary proof of these facts, which, as it turns out, 
works over any field k. Of course ‘completely elementary’ means that such concepts 
as ‘degree of a line bundle’ or ‘first Chern number’ or ‘cohomology’ or ‘intersection 
number’ are not needed or mentioned below. All we use is some linear algebra (or 
matrix manipulation). 

2. Vectorbundles over IP: 

Let k be any field. The projective line IF’: over k can be obtained as follows. Let 
Ui=Spec(k[s]), CJz=Spec(k[f]), U,z=Spec(k[.s,s-‘I)= Ui\(O}, &,=Spec(k[r,t-I])= 
Q\(O). Now glue 1/i and U2 together by identifying U,, and U,, by means of the 
isomorphism 

k[s,s-‘j=qt, t-11, s+. t-1. 

Now let E be an m-dimensional vectorbundle over Ip: defined over k, and let 
Am = Spec(k[X i, . . . . X,]). Then EIUi, i= 1,2, is trivial, i.e. EIui= Uixiam, so that E 

can be viewed (up to isomorphism) as obtained by glueing together CJ, x Am and 
U2 x A” by identifying U’\ { 0} x Am and U,\ { 0) x Am by means of an isomorphism 
of the form 

(s, 0) - (s-‘,A(s,s-‘)o) (2.1) 

where A(s,s-‘) is a matrix with coefficients in k[s,s-‘1 which has nonzero 
determinant for all s#O, s-i #O. This last fact means that 

det(A(s,s-‘))=s”, FEZ. (2.2) 

A vectorbundle automorphism of U, x Am is necessarily of the form (s, u)* 
(s, U(s)o) where U(s) is a matrix with coefficients in k[s] with det U(s) E k\ (0) and 
similarly an automorphism of U, x Am is given by a matrix V(s-i) with coefficients 
in k[.s-‘1 with determinant in k\(O). Different trivializations of E/L; differ by an 
automorphism of I/ix Am. It follows that 

Proposition 2.3. Isomorphism classes of m-dimensional algebraic vectorbundles 
over [P: correspond bgectively to equivalence classes of polynomial m x m matrices 
A(s,s-‘) over k[s,s-‘1 such that det A(s,s-I) = s”, n E Z where the equivalence 
relation is the following: A(s,s-‘) - A’(s,s-‘) iff there exist polynomial invertible 
m xm matrices U(s), V(s-‘) over k[s] and k[s-‘1 respectively with constant 
determinant such that 

A’(s,s-‘) = V(s-‘)A(s,s-‘)U(s). (2.4) 
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3. A canonical form for matrices over k[s, ~‘1 
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Now let us study canonical forms for m x m matrices over k[.s,s-‘1 under the 
equivalence relation defined in Proposition 2.3 above. The result is 

Proposition 3.1. Let A(s,s-‘) be an m x m matrljc over k[s,s-‘1 with determinant 
equal to s” for some n E E. Then there exist polynomial m x m matrices V(s-‘) and 
U(s) with constant nonzero determinant such that 

V(s_‘)A(.ss-‘)U(s) = 

/ 
S’I 0 

s’2 

\ *** I (3.2) 

-0 S’m 

with rlzr2z---zr,,,, ri E Z. The ri are uniquely determined by A(s,s-‘). Moreover if 
A&s-*) is polynomial in s then ri?O, i= 1, . . . . m, and if A(s,s-‘) is polynomial in 

S-' then riS0, i= I,..., m. 

Proof. Let’s prove uniqueness first. Write D(r,, . . . r,,J for the matrix on the right in 
(3.2). Suppose there were two such matrices equivalent to A(s,s-‘). Then there 
would be polynomial matrices with constant nonzero determinant L/(s), V(s-‘) such 
that 

V(s-‘)D(r, ,..., rm)=D(r; ,..., r~)U(s). 

If A is a matrix let 

denote the minor of A obtained by taking the determinant of the submatrix of 
A obtained by removing all rows with index in { 1, . . . , m)\ {i,, . . . , ik} and all 
columns with index in { 1, . . . , m}\(j,, . . . , jk}. Then of course 

Using this on the equality V(s-‘)D(r,, . . . , r,) = D(r;, . . . , rh)U(s) one finds that 

for all il < --- < ik. Now for some i,, . . . , ik, 

lp.-;; k(.s) # 0. 
1’ ’ 

(3.3) 

Hence r; + . ..+r.sr. + . . . 
‘I + rik for some i, < .-a < ik, and hence certainly r; + -a- + r;il 

r, + .-- + rk for all k. Multiplying with V(s-‘)-I on the left and u(s)-’ on the right in 
V(s-‘)D(r, , . . . ,rm) =D(r;, . . . , r~)t!_f(.s) and repeating the argUn'Ient giVeS rl + a*- + r& 
r;+---r;forallkandhencer;=r],i=l,...,m. 
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It remains to prove existence. First multiply A&s-‘) with a suitable power s”, 
n E R\l U (0) to obtain a polynomial matrix B(s). Then by post multiplication with a 
suitable u(s) (column operations) we can find a B’(s) with 6;t#O and b;i=O, 
i=2, . . . . m(b;, is thegreatest commondivisorof bt,,...,~t,,,). Ofcourseb;t=skrfor 
some k, E h\J U (0) because det B(s) is a power of s. Let B2 be the lower-right 
(m - 1) x (m - 1) submatrix of B. By induction we can assume that the proposition 
holds for (m - 1) x (m - 1) matrices. (The case m = 1 is trivial). So there are 
V,(s), V,(s-‘) such that Vz(s-‘)BZU2(s) is of the form of the right hand side of (3.2). 
Then 

S&l 0 . . . 0 

c2 Sk2 0 

: 0 **. 

!m Sk, I (3.4) 

for certain k,, k2, . . . , km E IN U (0) (same k, as before) and ci E k[s, s-‘1, i = 2,. . . , m. 
Subtracting suitable k[s-‘1 multiplies of the first row from rows 2, . . . ,m (which is 
premultiplication with a I+-‘)) we can moreover see to it that ci E k[s]. 

Now consider all polynomial matrices of the form (3.4) which are equivalent to 
B(s). Choose one for which k, is maximal. Such a one exist because k, sdegree 
(det B(s)) because k2, . . . , km _ ‘0. We claim that then kl L ki, i= 2, . . . , m. Indeed 
suppose that k, c ki. Subtracting a suitable k[.s-‘1 multiple of the first row from the 
i-th row we find a matrix (3.4) with ci =skl + t c’(s). Now interchange the first and the 
i-th row to find a polynomial matrix B’(s) such that the greatest common divisor of 
its first row elements is ski with k; L k, + 1. Now apply to B’(s) the same procedure as 
above to B(s). This would give a C’(s) of the form (3.4) with k;> k,, a contradiction. 
We can therefore assume that in (3.4) kl 1 ki, CiE k[s], i=2, . . . , m. Subtracting 
suitable k[s]-multiples of the 2-nd, . . . , m-th columns from the first one we find a 
matrix (3.4) with degree (Ci)Ski. But then deg(ci)<kl SO that a suitable k[s-‘1 
multiple of ski is equal to ci so that a further premultiplication with a V(s-‘) gives us 
a matrix (3.4) with c2= -me = c,=O. This proves the first half of the last part of the 
statement of the proposition and shows that there are kl, . . . . k,,E bl U (01, 
kl z... 1 km (by permuting columns and rows if necessary) and u(s), V(s-*) of 
constant nonzero determinant such that 

V(s-‘)s”A(s,s-‘)U(.s) = V(s-‘)B(s)U(s) =D(k,, . . . , km). 

Multiplying with S-” gives V(S-‘)A(s,s-‘)U(S) =D(rl, . . ..r.) with Ti= ki-n. The 
second half of the last statement of the proposition is proved as the first half starting 
with a matrix B(s-‘) and using row (resp. column) operations everywhere where 
we used column (resp. row) operations above. This concludes the proof of Proposi- 
tion 3.1. 
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4. Classification of vectorbundles over ip: 

Let O(n), FEZ be the line bundle over Ip: defined by the glueing matrix 
A(s,s-‘) =s_“. Obviously then the bundle defined by the glueing matrix 
A(s,s-‘) =D(r,, . . . , r,) is equal to the direct sum O(-r,)@...@O(-T,,,). 

Theorem 4.1. Let E be an algebraic m-dimensional vectorbundle over IP: which is 
defined over k. Then E is isomorphic over k to a direct sum of line bundles 

E=O(K,)@-..@O(K,), K,T--.~K,,,, K~EZ. i=l,...,m, 

and the Ki are uniquely determined by the isomorphism class of E. 

Remarks 4.2. It is perhaps worth remarking that E is positive (meaning that all the 
K~(E)z 0) if the glueing matrix A(s,s-‘) is polynomial in s-i and that E is negative 
(i.e. Ki(E)IO all i) if A(s,s-‘) is polynomial in s. This follows from the last 
statement of Proposition 3.1. Also E contains a summand O(n) with n >O if 
deg(det A(S,s-I)) <O. Finally it follows that vectorbundles over lP: have no forms, 
i.e. if E and E’ are two vectorbundles over k which become isomorphic over the 
algebraic closure A? of k then E and E’ are also isomorphic over k. This can of course 
also be seen by other, more sophisticated, means (e.g. Galois cohomology). 
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