P.4. Example proofs

P.4.1. An inverse function to f exists if and only if f is bijective.-

Theorem P.4.1. - Let $f: S \rightarrow T$ be a function. The inverse function to f exists if and only if f is bijective.

Proof. -
\Rightarrow : Assume $f: S \rightarrow T$ has an inverse function $f^{-1}: T \rightarrow S$.
To show: (a) f is injective.
(b) f is surjective.
(a) Assume $s_{1}, s_{2} \in S$ and $f\left(s_{1}\right)=f\left(s_{2}\right)$.

To show: $s_{1}=s_{2}$.

$$
\left.\left.s_{1}=f^{-1} f\left(s_{1}\right)\right)=f^{-1} f\left(s_{2}\right)\right)=s_{2} .
$$

So f is injective.
(b) Let $t \in T$.

To show: There exists $s \in S$ such that $f(s)=t$.
Let $s=f^{-1}(t)$.
Then

$$
f(s)=f\left(f^{-1}(t)\right)=t
$$

So f is surjective.
So f is bijective.
\Leftarrow : Assume $f: S \rightarrow T$ is bijective.
To show: f has an inverse function.
We need to define a function $\varphi: T \rightarrow S$.
Let $t \in T$.
Since f is surjective there eists $s \in S$ such that $f(s)=t$.
Define $\varphi(t)=s$.
To show: (a) φ is well defined.
(b) φ is an inverse function to f.
(a) To show: (aa) If $t \in T$ then $\varphi(t) \in S$.
(ab) If $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$ then $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$.
(aa) This follows from the definition of φ.
(ab) Assume $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$.
Let $s_{1}, s_{2} \in S$ such that $f\left(s_{1}\right)=t_{1}$ and $f\left(s_{2}\right)=t_{2}$.
Since $t_{1}=t_{2}$ then $f\left(s_{1}\right)=f\left(s_{2}\right)$.
Since f is injective this implies that $s_{1}=s_{2}$.
So $\varphi\left(t_{1}\right)=s_{1}=s_{2}=\varphi\left(t_{2}\right)$.
So φ is well defined.
(b) To show: (ba) If $s \in S$ then $\varphi(f(s))=s$.
(bb) If $t \in T$ then $f(\varphi(t))=t$.
(ba) This follows from the definition of φ.
(bb) Assume $t \in T$.
Let $s \in S$ be such that $f(s)=t$.
Then

$$
f(\varphi(t))=f(s)=t .
$$

[^0]So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T, respectively. So φ is an inverse function to f.

P.4.2. An equivalence relation on S and a partition of S are the same data.-

Let S be a set.

- A relation \sim on S is a subset R_{\sim} of $S \times S$. Write $s_{1} \sim s_{2}$ if the pair $\left(s_{1}, s_{2}\right)$ is in the subset R_{\sim} so that

$$
R_{\sim}=\left\{\left(s_{1}, s_{2}\right) \in S \times S \mid s_{1} \sim s_{2}\right\}
$$

- An equivalence relation on S is a relation \sim on S such that
(a) if $s \in S$ then $s \sim s$,
(b) if $s_{1}, s_{2} \in S$ and $s_{1} \sim s_{2}$ then $s_{2} \sim s_{1}$,
(c) if $s_{1}, s_{2}, s_{3} \in S$ and $s_{1} \sim s_{2}$ and $s_{2} \sim s_{3}$ then $s_{1} \sim s_{3}$.

Let \sim be an equivalence relation on a set S and let $s \in S$. The equivalence class of s is the set

$$
[s]=\{t \in S \mid t \sim s\}
$$

A partition of a set S is a collection \mathcal{P} of subsets of S such that
(a) If $s \in S$ then there exists $P \in \mathcal{P}$ such that $s \in P$, and
(b) If $P_{1}, P_{2} \in \mathcal{P}$ and $P_{1} \cap P_{2} \neq \emptyset$ then $P_{1}=P_{2}$.

Theorem P.4.2. -
(a) If S is a set and let \sim be an equivalence relation on S then the set of equivalence classes of $\sim \quad$ is a partition of S.
(b) If S is a set and \mathcal{P} is a partition of S then
the relation defined by $s \sim t$ if s and t are in the same $P \in \mathcal{P}$
is an equivalence relation on S.
Proof. -
(a) To show: (aa) If $s \in S$ then s is in some equivalence class.
(ab) If $[s] \cap[t] \neq \emptyset$ then $[s]=[t]$.
(aa) Let $s \in S$.
Since $s \sim s$ then $s \in[s]$.
(ab) Assume $[s] \cap[t] \neq \emptyset$.
To show: $[s]=[t]$.
Since $[s] \cap[t] \neq \emptyset$ then there is an $r \in[s] \cap[t]$.
So $s \sim r$ and $r \sim t$.
By transitivity, $s \sim t$.
To show: (aba) $[s] \subseteq[t]$.
(abb) $[t] \subseteq[s]$.
(aba) Assume $u \in[s]$.
Then $u \sim s$.
We know $s \sim t$.
So, by transitivity, $u \sim t$.
Therefore $u \in[t]$.
So $[s] \subseteq[t]$.
(aba) Assume $v \in[t]$.

Then $v \sim t$.
We know $t \sim s$.
So, by transitivity, $v \sim s$.
Therefore $v \in[s]$.
So $[t] \subseteq[s]$.
So $[s]=[t]$.
So the equivalence classes partition S.
(b) To show: \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric and transitive.
To show: (ba) If $s \in S$ then $s \sim s$.
(bb) If $s \sim t$ then $t \sim s$.
(bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
(ba) Since s and s are in the same S_{α} then $s \sim s$.
(bb) Assume $s \sim t$.
Then s and t are in the same S_{α}.
So $t \sim s$.
(bb) Assume $s \sim t$ and $t \sim u$.
Then s and t are in the same S_{α} and t and u are in the same S_{α}.
So $s \sim u$.
So \sim is an equivalence relation.

P.4.3. Identities in a field. -

A field is a set \mathbb{F} with functions

$$
\begin{aligned}
\mathbb{F} \times \mathbb{F} & \longrightarrow \mathbb{F} \\
(a, b) & \longmapsto a+b
\end{aligned} \quad \text { and } \quad \begin{aligned}
\mathbb{F} \times \mathbb{F} & \longrightarrow \mathbb{F} \\
(a, b) & \longmapsto a b
\end{aligned}
$$

such that
(Fa) If $a, b, c \in \mathbb{F}$ then $(a+b)+c=a+(b+c)$,
(Fb) If $a, b \in \mathbb{F}$ then $a+b=b+a$,
(Fc) There exists $0 \in \mathbb{F}$ such that

$$
\text { if } a \in \mathbb{F} \quad \text { then } \quad 0+a=a \text { and } a+0=a,
$$

(Fd) If $a \in \mathbb{F}$ then there exists $-a \in \mathbb{F}$ such that $a+(-a)=0$ and $(-a)+a=0$,
(Fe) If $a, b, c \in \mathbb{F}$ then $(a b) c=a(b c)$,
(Ff) If $a, b, c \in \mathbb{F}$ then

$$
(a+b) c=a c+b c \quad \text { and } \quad c(a+b)=c a+c b
$$

(Fg) There exists $1 \in \mathbb{F}$ such that

$$
\text { if } a \in \mathbb{F} \quad \text { then } 1 \cdot a=a \text { and } a \cdot 1=a,
$$

(Fh) If $a \in \mathbb{F}$ and $a \neq 0$ then there exists $a^{-1} \in \mathbb{F}$ such that $a a^{-1}=1$ and $a^{-1} a=1$,
(Fi) If $a, b \in \mathbb{F}$ then $a b=b a$.
Proposition P.4.3. - Let \mathbb{F} be a field.
(a) If $a \in \mathbb{F}$ then $a \cdot 0=0$.
(b) If $a \in \mathbb{F}$ then $-(-a)=a$.
(c) If $a \in \mathbb{F}$ and $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$.
(d) If $a \in \mathbb{F}$ then $a(-1)=-a$.
(e) If $a, b \in \mathbb{F}$ then $(-a) b=-a b$.
(f) If $a, b \in \mathbb{F}$ then $(-a)(-b)=a b$.

Proof. -
(a) Assume $a \in \mathbb{F}$.

$$
\begin{aligned}
a \cdot 0 & =a \cdot(0+0), \quad \text { by }(\mathrm{Fc}), \\
& =a \cdot 0+a \cdot 0, \quad \text { by }(\mathrm{Ff}) .
\end{aligned}
$$

Add $-a \cdot 0$ to each side and use (Fd) to get $0=a \cdot 0$.
(b) Assume $a \in \mathbb{F}$.

By (Fd),

$$
-(-a)+(-a)=0=a+(-a)
$$

Add $-a$ to each side and use (Fd) to get $-(-a)=a$.
(c) Assume $a \in \mathbb{F}$ and $a \neq 0$.

By (Fh),

$$
\left(a^{-1}\right)^{-1} \cdot a^{-1}=1=a \cdot a^{-1} .
$$

Multiply each side by a and use (Fh) and (Fg) to get $\left(a^{-1}\right)^{-1}=a$.
(d) Assume $a \in \mathbb{F}$.

By (Ff),

$$
a(-1)+a \cdot 1=a(-1+1)=a \cdot 0=0,
$$

where the last equality follows from part (a).
So, by $(\mathrm{Fg}), a(-1)+a=0$.
Add $-a$ to each side and use (Fd) and (Fc) to get $a(-1)=-a$.
(e) Assume $a, b \in \mathbb{F}$.

$$
\begin{aligned}
(-a) b+a b & =(-a+a) b, \quad \text { by }(\mathrm{Ff}), \\
& =0 \cdot b, \quad \text { by }(\mathrm{Fd}), \\
& =0, \quad \text { by part }(\mathrm{a}) .
\end{aligned}
$$

Add $-a b$ to each side and use (Fd) and (Fc) to get $(-a) b=-a b$.
(f) Assume $a, b \in \mathbb{F}$.

$$
\begin{aligned}
(-a)(-b) & =-(a(-b)), \quad \text { by }(\mathrm{e}), \\
& =-(-a b), \quad \text { by }(\mathrm{e}), \\
& =a b, \quad \text { by part }(\mathrm{b}) .
\end{aligned}
$$

P.4.4. Identities in an ordered field. -

An ordered field is a field \mathbb{F} with a total order \leqslant such that
(OFa) If $a, b, c \in \mathbb{F}$ and $a \leqslant b$ then $a+c \leqslant b+c$,
(OFb) If $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$ then $a b \geqslant 0$.
Proposition P.4.4. - Let \mathbb{F} be an ordered field.
(a) If $a \in \mathbb{F}$ and $a>0$ then $-a<0$.
(b) If $a \in \mathbb{F}$ and $a \neq 0$ then $a^{2}>0$.
(c) $1 \geqslant 0$.
(d) If $a \in \mathbb{F}$ and $a>0$ then $a^{-1}>0$.
(e) If $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$ then $a+b \geqslant 0$.
(f) If $a, b \in \mathbb{F}$ and $0<a<b$ then $b^{-1}<a^{-1}$.

Proof. -
(a) Assume $a \in \mathbb{F}$ and $a>0$.

Then $a+(-a)>0+(-a)$, by (OFb).
So $0>-a, \quad$ by (Fd) and (Fc).
(b) Assume $a \in \mathbb{F}$ and $a \neq 0$.

Case 1: $a>0$.
Then $a \cdot a>a \cdot 0, \quad$ by (OFb).
So $a^{2}>0, \quad$ by part (a).
Case 2: $a<0$.
Then $-a>0, \quad$ by part (a).
Then $(-a)^{2}>0$, by Case 1 .
So $a^{2}>0, \quad$ by Proposition P.4.3 (f).
(c) To show: $1 \geqslant 0$.
$1=1^{2} \geqslant 0, \quad$ by part (b).
(d) Assume $a \in \mathbb{F}$ and $a>0$.

By part (b), $a^{-2}=\left(a^{-1}\right)^{2}>0$.
So $a\left(a^{-1}\right)^{2}>a \cdot 0, \quad$ by (OFb).
So $a^{-1}>0, \quad$ by (Fh) and Proposition P.4.3 (a).
(e) Assume $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$.

$$
\begin{aligned}
a+b & \geqslant 0+b, \quad \text { by }(\mathrm{OFa}), \\
& \geqslant 0+0, \quad \text { by }(\mathrm{OFa}), \\
& =0, \quad \text { by }(\mathrm{Fc}) .
\end{aligned}
$$

(f) Assume $a, b \in \mathbb{F}$ and $0<a<b$.

So $a>0$ and $b>0$.
Then, by part (d), $a^{-1}>0$ and $b^{-1}>0$.
Thus, by (OFb), $a^{-1} b^{-1}>0$.
Since $a<b$, then $b-a>0, \quad$ by (OFa).
So, by (OFb), $\quad a^{-1} b^{-1}(b-a)>0$.
So, by (Fh), $a^{-1}-b^{-1}>0$.
So, by (OFa), $a^{-1}>y^{-1}$.

[^0]: Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

