G.4. Exercises: Group actions

Exercise G.4.1. — Let G be a group. G acts on itself by left multiplication.

$$\begin{array}{rccc} G \times G & \to & G \\ (g,h) & \mapsto & gh \end{array}$$

- (a) Show that there is a single orbit, G.
- (b) Show that if $h \in G$ the stabilizer of h is $\{1\}$.

Exercise G.4.2. — Prove the following theorem

(Cayley's Theorem) Let G be a finite group and let n = Card(G). Then G is isomorphic to a subgroup of the symmetric group S_n .

by completing the steps below:

(a) Show that

$$\begin{array}{cccc} p \colon & G & \to & \{ \text{functions from } G \text{ to } G \} \\ g & \longmapsto & \sigma_g \end{array} \quad \text{where} \quad \begin{array}{cccc} \sigma_g \colon & G & \to & G \\ & h & \mapsto & gh \end{array}$$

is a function.

- (b) Show that $\operatorname{im} p = \{ \text{bijective functions from } G \text{ to } G \}, \text{ and } identify \{ \text{bijective functions from } G \text{ to } G \} \text{ with } S_n.$
- (c) Show that $p: G \to S_n$ as given by (a) and (b) is a group homomorphism.
- (d) Show that $p: G \to S_n$ is injective and conclude that p is an isomorphism.

Exercise G.4.3. — Let G be a finite group and let n = Card(G). Let S_n denote the symmetric group on n. For each $g \in G$ define a map

- (a) Show that we can view $m_g \in S_n$ as a permutation of the elements of G.
- (b) Show that

$$f g_1, g_2 \in G$$
 then $m_{q_1} \circ m_{q_2} = m_{q_1q_2}$

since $m_{g_1}(m_{g_2}(h)) = m_{g_1}(g_2h) = g_1g_2h = m_{g_1g_2}(h).$

- (c) Show that if $1 \in G$ denotes the identity in G then m_1 is the identity map on G.
- (d) Show that if $g \in G$ then $m_{q^{-1}}$ is the inverse of the map m_g .
- (e) Show that if $g, h \in G$ and $m_g = m_h$ then $g = m_g(1) = m_h(1) = h$.

Define a map

$$\begin{array}{rcccc} \varphi \colon & G & \to & S_n \\ & g & \mapsto & m_q \end{array}$$

- (f) Show that, by (b) above, φ is a homomorphism.
- (g) Show that, by (e), φ is injective.
- (h) Using Theorem 1.1.15 c), conclude that

$$G \simeq \operatorname{im} \varphi \subseteq S_n.$$

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

Exercise G.4.4. — Let H be a subgroup of a group G. The group H acts on G by right multiplication.

$$\begin{array}{rccc} H \times G & \to & G \\ (h,g) & \mapsto & gh^{-1}. \end{array}$$

- (a) Show that if $g \in G$, the orbit of g under this action is the coset gH. Thus, the orbits are the cosets G/H.
- (b) Show that the stabilizer of an element $g \in G$ is the group $\{1\}$.
- (c) Using Proposition 1.2.4, REFERENCE give another proof of Proposition 1.1.3. REF-ERENCE
- (d) Using Corollary 1.2.7, REFERENCE show that

$$\operatorname{Card}(H) = \operatorname{Card}(gH)\operatorname{Card}(\{1\}) = \operatorname{Card}(gH),$$

and give another proof of Proposition 1.1.4.REFERENCE

Exercise G.4.5. — Let H be a subgroup of a group G. The group G acts on G/H by left multiplication.

$$\begin{array}{rccc} G \times G/H & \to & G/H \\ (g, kH) & \mapsto & gkH \end{array}$$

- (a) Show that there is one orbit under this action, G/H.
- (b) Show that the stabilizer of the identity coset H is H and the stabilizer of a coset kH for $k \in G$ is the group kHk^{-1} .
- (c) Use Corollary 1.2.7 REFERENCE to show that

$$\operatorname{Card}(G) = \operatorname{Card}(G/H)\operatorname{Card}(H),$$

and thus give another proof of Corollary 1.1.5.REFERENCE

Exercise G.4.6. — Let $p \in \mathbb{Z}_{>0}$ be a prime. A *p*-group is a group of cardinality p^a with $a \in \mathbb{Z}_{>0}$. Let G be a *p*-group.

- (a) Show that G contains an element of order p by showing that if $x \in G$ and x has order p^b then $g = p^{b-1}$ has order p.
- (b) Use the class equation (Proposition G.2.10),

$$\operatorname{Card}(G) = \operatorname{Card}(Z(G)) + \sum_{\operatorname{Card}(\mathcal{C}_{g_i}) > 1} \operatorname{Card}(\mathcal{C}_{g_i}),$$

to show that if $Card(G) \neq 1$ then $Z(G) \neq \{1\}$.

(c) Show that there exists a chain of normal subgroups of G Use part (a) to show that G/N_i contains an element of order p, Then show that G/N_i contains a normal subgroup \mathcal{H} of order p and use the correspondence ??? to conclude that G contains a normal subgroup N_{i+1} such that $N_{i+1}/N_i = H$. Use the fact that $Z(G) \neq \{1\}$ to start the induction. Conclude that if $Card(G) = p^a$ then there exists a chain of normal subgroups of G,

$$\{1\} \subseteq N_1 \subseteq \cdots N_{a-1} \subseteq G$$
 such that $\operatorname{Card}(N_i) = p^i$.

Exercise G.4.7. — Let G be a group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime.

- (a) Show that if Card(G) = p then $G \cong \mathbb{Z}/p\mathbb{Z}$.
- (b) Show that if $\operatorname{Card}(G) = p^2$ then $G \cong \mathbb{Z}/p^2\mathbb{Z}$ or $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Exercise G.4.8. — First Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that G has a p-Sylow subgroup by completing the following steps.

(a) Let $\Lambda^{p^a}(G)$ be the set of subsets of G of cardinality p^a . Show that if $j \in \{1, \ldots, p^a\}$ and p^i divides $p^a b - j$ then p^i divides $p^a - j$. Conclude that

$$\operatorname{Card}(\Lambda^{p^a}(G)) = \begin{pmatrix} p^a b \\ p^a \end{pmatrix}$$
 is not divisible by p .

(b) Consider the action of G on $\Lambda^{p^a}(G)$ by left multiplication and use Proposition ??,

$$\operatorname{Card}(\Lambda^{p^a}(G)) = \sum_{\text{distinct orbits}} \operatorname{Card}(GS),$$

to conclude that there exists $S \in \Lambda^{p_a}(G)$ such that the cardinality of the orbit of S is not divisible by p.

(c) Let $P = \operatorname{Stab}_G(S)$ and show that $\operatorname{Card}(P) = p^a$.

Exercise G.4.9. — Second Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that all p-Sylow subgroups of G are conjugate by completing the following steps.

(a) Let P and H be p-Sylow subgroups of G. Let H act on G/P by left multiplication. Use

$$\operatorname{Card}(G/P) = \sum_{\text{distinct orbits}} \operatorname{Card}(HgP),$$

to show that there is an orbit HgP with Card(HgP) = 1.

(b) Show that $H \subseteq gPg^{-1}$ and conclude that $H = gPg^{-1}$.

Exercise G.4.10. — Third Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $Card(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that the number of p-Sylow subgroups of G is 1 mod p by completing the following steps.

- (a) Let P be a p-Sylow subgroup of G. Let P act on the set S of p-Sylow subgroups of G by conjugation. Show that if P*Q is an orbit under this action then Card(P*Q) = 1 or p divides Card(P*Q).
- (b) Assume $\operatorname{Card}(P * Q) = 1$ and let N(Q) be the normalizer of Q. Show that both P and Q are both p-Sylow subgroups of N(Q).
- (c) Assume $\operatorname{Card}(P * Q) = 1$. Use the second Sylow theorem and part (b) to show that P = Q.
- (d) Use part (a) and (c) and

$$\operatorname{Card}(\mathcal{S}) = \sum_{\operatorname{distinct orbits}} \operatorname{Card}(P * Q)$$

to conclude that $Card(\mathcal{S}) = 1 \mod p$.

Exercise G.4.11. — Fourth Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that the number of p-Sylow subgroups divides $\operatorname{Card}(G)$ by completing the following steps.

- (a) Let G act on the set \mathcal{P} of p-Sylow subgroups of G by conjugation. Use the second Sylow theorem to conclude that there is only one orbit under this action.
- (b) Conclude, from (a), that the number of p-Sylow subgroups divides Card(G).