R.4. Exercises: Modules

Exercise R.4.1. - Let A be an abelian group with operation $+: A \times A \rightarrow A$. For each integer $j \in \mathbb{Z}$ and each $a \in A$ define

$$
j a= \begin{cases}a+\cdots+a(j \text { times }), & \text { if } j>0 \\ 0, & \text { if } j=0 \\ (-a)+(-a)+\cdots+(-a)(|j| \text { times }), & \text { if } j<0\end{cases}
$$

Define an action of the ring of integers \mathbb{Z}, with operations of addition and multiplication, by

$$
\begin{array}{rlll}
\alpha: & \mathbb{Z} \times A & \rightarrow & A \\
(j, a) & \mapsto & j a
\end{array}
$$

Show that A with action of \mathbb{Z} given by α is a left \mathbb{Z}-module.
Exercise R.4.2. -
(a) Let R be a ring. Define an action of R on itself by

$$
\begin{aligned}
\alpha: \quad R \times R & \rightarrow \\
(r, m) & \mapsto \\
& \mapsto m .
\end{aligned}
$$

Show that R with the action α is a left R-module.
(b) Let I be an ideal of a ring R. Define an action of R on R / I by

$$
\beta: \quad \begin{array}{clcc}
R \times R / I & \rightarrow & R / I \\
(r, s+I) & \mapsto & r s+I
\end{array}
$$

Show that R / I with the action β is a left R-module.
(c) Let I be an ideal of a ring R. Show that I is a submodule of the R-module R with action as given in (a).
(d) Let R be a ring. A left ideal of R is a subset $L \subseteq R$ such that
(da) If $a, b \in L$ then $a+b \in L$.
(db) If $l \in L$ and $r \in R$ then $r l \in L$.
Show that a subset $L \subseteq R$ is a left ideal of R if and only if L is a submodule of the left R-module R (given by a)).
(e) Give an example of a ring R and a left ideal L of R such that L is not an ideal of R.

Exercise R.4.3. - The annihilator of an element m of a left R-module M is the set

$$
\operatorname{ann}_{R}(m)=\{r \in R \mid r m=0\}
$$

The annihilator of a subset S of a left R-module M is the set

$$
\operatorname{ann}_{R}(S)=\{r \in R \mid \text { if } s \in S \text { then } r s=0\} .
$$

(a) Show that if S is a subset of an R-module M, then $\operatorname{ann}_{R}(S)$ is a left ideal of R.
(b) Give an example of a left R-module M and a subset $S \subseteq M$ such that $\operatorname{ann}_{R}(S)$ is not an ideal of R.
(c) Show that if M is a left R-module then $\operatorname{ann}_{R}(M)$ is an ideal of R.
(d) Show that if M is a left R-module and I is an ideal of R such that $I \subseteq \operatorname{ann}_{R}(M)$ then M, with action given by

$$
\begin{array}{rlc}
R / I \times M & \rightarrow & M \\
(r+I, m) & \mapsto & r m,
\end{array}
$$

is a left R / I-module.
Exercise R.4.4. -
(a) Show that the intersection of two submodules of a left R-module M is a submodule of M.
(b) Give an example to show that the union of two submodules of a left R-module M is not necessarily a submodule M.
(c) Let N and P be submodules of a left R-module M. Show that $N+P=\{n+p \mid n \in N$ and $p \in P\}$ is a submodule of M.
(d) Let N and P be submodules of a left R-module M. Show that $M \simeq N \oplus P$ if and only if $N \cap P=(0)$ and $M=N+P$.
(e) Let L be a left ideal of a ring R and let M be a left R-module. Show that $L M=$ $\{l m \mid l \in L$ and $m \in M\}$ is a submodule of M.
(f) Let L_{1} and L_{2} be left ideals of R and define $L_{1}+L_{2}=\left\{l_{1}+l_{2} \mid l_{1} \in L_{1}\right.$ and $\left.l_{2} \in L_{2}\right\}$. Show that if $L_{1} \cap L_{2}=(0)$ and $L_{1}+L_{2}=R$ then $M \simeq L_{1} M \oplus L_{2} M$.

Exercise R.4.5. - Let M be a left R-module and let S be a subset of M. Let \mathcal{N} be the set of submodules N of M such that $S \subseteq N$. Define

$$
N_{S}=\bigcap_{N \in \mathcal{N}} N
$$

(a) Show that N_{S} is a submodule of M.
(b) Show that $S \subseteq N_{S}$ since $S \subseteq N$ for every $N \in \mathcal{N}$.
(c) Show that if N is a submodule of M and $S \subseteq N$ then $N \supseteq N_{S}$.

Conclude that $N_{S}=(S)$. So (S) is the smallest submodule of M containing S.
Exercise R.4.6. - Let $f: M \rightarrow P$ be an R-module homomorphism.
(a) Let $N \subseteq M$ be a submodule of M and define

$$
f(N)=\{f(n) \mid n \in N\} .
$$

(aa) Show that $f(N) \subseteq \operatorname{im} f=f(M)$.
(ab) Show that $f(N)$ is a submodule of P.

(b) Let Q be a submodule of P and define

$$
f^{-1}(Q)=\{m \in M \mid f(m) \in Q\}
$$

(ba) Show that $f^{-1}(Q) \supseteq \operatorname{ker} f=f^{-1}((0))$.
(bb) Show that $f^{-1}(Q)$ is a submodule of R.

$$
\begin{array}{rlr}
M & \xrightarrow{f} & P \\
f^{-1}(Q) & \longmapsto & Q \\
\bigcup^{-1} & & \bigcup^{\prime} \\
\operatorname{ker} f= & \longmapsto(0))
\end{array}
$$

(c) (ca) Let N be a submodule of M and show that $N \subseteq f^{-1}(f(N))$.
(cb) Give an example of a homomorphism $f: M \rightarrow P$ and a submodule N of M such that

$$
N \neq f^{-1}(f(N)) .
$$

(cc) Show that if N is a submodule of M that contains ker f then $N=f^{-1}(f(N))$.
(d) (da) Let Q be a submodule of P and show that $f\left(f^{-1}(Q)\right) \subseteq Q$.
(db) Give an example of a homomorphism $f: M \rightarrow P$ and a submodule Q such that $f\left(f^{-1}(Q)\right) \neq Q$.
(dc) Show that if Q is a submodule of P and $Q \subseteq \operatorname{im} f$ then $Q=f\left(f^{-1}(Q)\right)$.
(e) Conclude from (c) and (d) that there is a one-to-one correspondence between submodules of M that contain ker f and submodules of P that are contained in imf.
\{submdoules of M containing ker $f\} \quad \longleftrightarrow \quad$ \{submodules of P contained in im f \}
Exercise R.4.7. - Let N be a submodule of a left R-module M.
(a) The inclusion is the map $\iota: N \rightarrow M$ given by

$$
\begin{array}{llll}
\iota: \quad N & \rightarrow M \\
n & \mapsto & n .
\end{array}
$$

Show that $\iota: N \rightarrow M$ is a well defined injective homomorphism.
(b) The quotient map is the map $\pi: M \rightarrow M / N$ given by

$$
\begin{array}{cl}
\pi: \quad M & \rightarrow M / N \\
& m
\end{array}>m+N .
$$

Show that $\pi: M \rightarrow M / N$ is a well defined surjective homomorphism and that $\operatorname{im} \pi=M / N$ and $\operatorname{ker} \pi=N$.
(c) Let P be a submodule of M. Show, using Ex. R.4.6, that
(ca) $P / N=\{p+N \mid p \in P\}$ is a submodule of M / N.
(cb) $P / N=\pi(P)$ and if P contains N then $\pi^{-1}(\pi(P))=P$.
(cc) Conclude that there is a one-to-one correspondence \{submodules of M containing $N\} \longleftrightarrow\{$ submodules of $M / N\}$.

Exercise R.4.8. - An exact sequence

$$
\cdots \rightarrow M_{i-1} \xrightarrow{f_{i-1}} M_{i} \xrightarrow{f_{i}} M_{i+i} \rightarrow \cdots
$$

is a sequence of left R-modules and R-module homomorphisms $f_{i}: M_{i} \rightarrow M_{i+1}$, such that

$$
\operatorname{ker} f_{i}=\operatorname{im} f_{i-1}
$$

A short exact sequence is an exact sequence of the form

$$
(0) \rightarrow N \xrightarrow{g} M \xrightarrow{f} P \rightarrow(0) .
$$

(a) Show that in the above short exact sequence g is always injective and f is always surjective.
(b) Let $f: M \rightarrow P$ be a homomorphism and show that the sequence

$$
(0) \rightarrow \operatorname{ker} f \rightarrow M \rightarrow \operatorname{im} f \rightarrow(0)
$$

is always exact.
(c) Let N be a submodule of a left R-molule M. Let $\iota: N \rightarrow M$ be the canonical injection and let $\pi: M \rightarrow M / N$ be the canonical surjection. Show that

$$
(0) \rightarrow N \xrightarrow{\iota} M \xrightarrow{\pi} M / N \rightarrow(0)
$$

is a short exact sequence.
Exercise R.4.9. - Let N be a submodule of M and let P be a submodule of M containing N. Then, by Ex.R.4.7(ca), P / N is a submodule of M / N.
Let $\frac{M / N}{P / N}$ be the quotient module and let

$$
\pi_{2}: M / N \rightarrow \frac{M / N}{P / N} \quad \text { be the canonical surjection. }
$$

Let $\pi_{1}: M \rightarrow M / N$ be the canonical surjection so that

$$
\left(\pi_{1} \circ \pi_{2}\right): M \xrightarrow{\pi_{1}} M / N \xrightarrow{\pi_{2}} \frac{M / N}{P / N} .
$$

(a) Show that $\operatorname{im}\left(\pi_{1} \circ \pi_{2}\right)=\frac{M / N}{P / N}$.
(b) Show that $\operatorname{ker}\left(\pi_{1} \circ \pi_{2}\right)=P$.
(c) Using Theorem R.2.6, conclude that $M / P \simeq \frac{M / N}{P / N}$ as left R-modules.

Exercise R.4.10. - Let N be a submodule of M and let P be any submodule of M. Let

$$
\begin{array}{llll}
\pi: & P & \rightarrow & M / N \\
& p & \mapsto & p+N
\end{array}
$$

be the restriction of the canonical surjection $\pi: M \rightarrow M / N$ to P.
(a) Show that $\operatorname{ker} \pi=P \cap N$.
(b) Show that $\operatorname{im} \pi=\frac{P+N}{N}=\{p+N \mid p \in P\}$.
(c) Using Theorem R.2.6(c), conclude that $\frac{P}{P \cap N} \simeq \frac{P+N}{N}$.
(d) Let L be a left ideal of a ring R and let N be a submodule of left R-module M. Let

$$
\begin{aligned}
L M & =\{l m \mid l \in L \text { and } m \in M\} \quad \text { and let } \\
L(M / N) & =\{l(m+N) \mid l \in L \text { and } m+N \in M / N\} .
\end{aligned}
$$

Show that

$$
L\left(\frac{M}{N}\right) \simeq \frac{L M+N}{N} \quad \text { as } R \text {-modules. }
$$

Exercise R.4.11. - Let N_{1} be a submodule of a left R-module M_{1} and let N_{2} be a submodule of a left R-module M_{2}.
(a) Show that $N_{1} \oplus N_{2}$ is a submodule of the left R-module $M_{1} \oplus M_{2}$.
(b) Let $\pi_{1}: M_{1} \rightarrow M_{1} / N_{1}$ and $\pi_{2}: M_{2} \rightarrow M_{2} / N_{2}$ be the canonical projections. Define a map

$$
\begin{array}{lllc}
\left(\pi_{1} \oplus \pi_{2}\right): & M_{1} \oplus M_{2} & \rightarrow & M_{1} / N_{1} \oplus M_{2} / N_{2} \\
\left(m_{1}, m_{2}\right) & \mapsto & \left(m_{1}+N_{1}, m_{2}+N_{2}\right) .
\end{array}
$$

Show that $\pi_{1} \oplus \pi_{2}$ is a well defined surjective R-module homomorphism.
(c) Show that $\operatorname{ker}\left(\pi_{1} \oplus \pi_{2}\right)=N_{1} \oplus N_{2}$.
(d) Using Theorem R.2.6, conclude that

$$
\frac{M_{1} \oplus M_{2}}{N_{1} \oplus N_{2}} \simeq \frac{M_{1}}{N_{1}} \oplus \frac{M_{2}}{N_{2}} .
$$

Exercise R.4.12. - A right R-module is a set M with an operation addition $+: M \times$ $M \rightarrow M$ and a right action $\times: M \times R \rightarrow M$ (we write $m_{1}+m_{2}$ instead of $+\left(m_{1}, m_{2}\right)$ and $m r$ instead of $\times(m, r))$ such that
(a) If $m_{1}, m_{2}, m_{3} \in M$ then $\left(m_{1}+m_{2}\right)+m_{3}=m_{1}+\left(m_{2}+m_{3}\right)$.
(b) If $m_{1}, m_{2} \in M$ then $m_{1}+m_{2}=m_{2}+m_{1}$.
(c) There exists a zero, $0 \in M$, such that $0+m=m$ for all $m \in M$.
(d) If $m \in M$ then there exists an additive inverse, $-m \in M$, such that $m+(-m)=0$.
(e) If $r_{1}, r_{2} \in R$ and $m \in M$ then $m\left(r_{1} r_{2}\right)=\left(m r_{1}\right) r_{2}$.
(f) If $m \in M$ then $m \cdot 1=m$
(g) If $r \in R$ and $m_{1}, m_{2} \in M$ then $\left(m_{1}+m_{2}\right) r=m_{1} r+m_{2} r$.
(h) If $r_{1}, r_{2} \in R$ and $m \in M$ then $m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}$.
(a) Copy all of $\S R .2$ over, change left to right everywhere, and make the appropriate changes in the definitions and the proofs. In this way, prove analogues of all of the results in $\S R .2$ on left R-modules for right R-modules.
(b) Let R be a commutative ring and let M be a left R-module. Define a right action of R on M by

$$
\begin{aligned}
\beta: \quad M \times R & \rightarrow \\
(m, r) & \mapsto \\
& \mapsto m .
\end{aligned}
$$

Show that M is a right R-module with right action given by β. This shows that if R is commutative then
every left R-module is also a right R-module.
Warning: This is true only if R is commutative. In general, something true for the left R-module over a particular ring R is not necessarily true for the right R-modules over that ring.

