F.3. Exercises: Vector spaces

Exercise F.3.1. — Let \mathbb{F} be a field.

- (a) Show that the intersection of two subspaces of an \mathbb{F} -vector space V is a subspace of V.
- (b) Give an example to show that the union of two subspaces of an \mathbb{F} -vector space V is not necessarily a subspace of V.
- (c) Let W and U be subspaces of an \mathbb{F} -vector space V. Show that $W + U = \{w + u \mid w \in W \text{ and } u \in U\}$ is a subspace of V.
- (d) Let W and U be subspaces of an \mathbb{F} -vector space V. Show that $V \simeq W \oplus U$ if and only if $W \cap U = (0)$ and V = W + U.

Exercise F.3.2. — Let V be an \mathbb{F} -vector space and let S be a subset of V. Let \mathcal{W} be the set of subspaces W of V such that $S \subseteq W$. Define

$$W_S = \bigcap_{W \in \mathcal{W}} W.$$

- (a) Show that W_S is a subspace of V.
- (b) Show that $S \subseteq W_S$ since $S \subseteq W$ for every $W \in \mathcal{W}$.
- (c) Show that if W is a subspace of V and $S \subseteq W$ then $W \supseteq W_S$.

Conclude that $W_S = \operatorname{span}_{\mathbb{F}}(S)$. So $\operatorname{span}_{\mathbb{F}}(S)$ is the smallest subspace of V containing S.

Exercise F.3.3. — Let V be an \mathbb{F} -vector space and let S be a subset of V. A linear combination of elements of S is an element of V of the form

$$\sum_{s \in S} c_s s$$

where $c_s \in \mathbb{F}$ and all but a finite number of the values c_s are equal to 0 (the set S may be infinite but we do not want to take infinite sums).

- (a) Let W be a subspace of V. Show that a linear combination of elements of W is an element of W.
- (b) Give an example of a vector space V, a subset $S \subseteq W$, and a linear combination v of elements of S such that $v \notin S$.
- (c) Let S be a subset of V and let L_S be the set of all linear combinations of elements of S.
 - (ca) Show that L_S is a subspace of V.
 - (cb) Show that $L_S = \operatorname{span}_{\mathbb{F}}(S)$.

Exercise F.3.4. — Let \mathbb{F} be a field. A column vector of length n is an $n \times 1$ array

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \quad \text{of elements } c_i \in \mathbb{F}.$$

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

Define an addition operation on column vectors by

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} + \begin{pmatrix} c_1' \\ c_2' \\ \vdots \\ c_n' \end{pmatrix} = \begin{pmatrix} c_1 + c_1' \\ c_2 + c_2' \\ \vdots \\ c_n + c_n' \end{pmatrix}$$

Define an action of \mathbb{F} on column vectors by

$$c \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} cc_1 \\ cc_2 \\ \vdots \\ cc_n \end{pmatrix}$$

The action of \mathbb{F} is scalar multiplication.

Show that the set \mathbb{F}^n of column vectors of length n is an \mathbb{F} -vector space.

Exercise F.3.5. — Let $T: V \to U$ be a linear transformation.

(a) Let $W \subseteq V$ be a subspace of V and define

$$T(W) = \{T(w) \mid w \in W\}.$$

- (aa) Show that $T(W) \subseteq \operatorname{im} T = T(V)$.
- (ab) Show that T(W) is a subspace of U.

$$V \xrightarrow{T} U$$

$$\begin{array}{cccc} W & \longmapsto & T(W) \\ \bigcap & & \bigcap \\ V & \longmapsto & T(V) & = \operatorname{im} T. \end{array}$$

(b) Let Y be a subspace of U and define

$$T^{-1}(Y) = \{ v \in V \mid T(v) \in Y \}.$$

- (ba) Show that $T^{-1}(Y) \supseteq \ker T = T^{-1}((0))$.
- (bb) Show that $T^{-1}(Y)$ is a subspace of V.

$$V \xrightarrow{I} U$$

$$T^{-1}(Y) \longmapsto Y$$

$$\bigcup | \qquad \bigcup |$$

$$\ker T = T^{-1}((0)) \longmapsto (0).$$

- (c) (ca) Let W be a subspace of V and show that $W \subseteq T^{-1}(T(W))$.
 - (cb) Give an example of a linear transformation $T: V \to U$ and a subspace W of V such that $W \neq T^{-1}(T(W))$.
 - (cc) Show that if W is a subspace of V that contains ker T then $W = T^{-1}(T(W))$.
- (d) (da) Let Y be a subspace of U and show that $T(T^{-1}(Y)) \subseteq Y$.
 - (db) Give an example of a linear transformation $T: V \to U$ and a subspace Y such that $T(T^{-1}(Y)) \neq Y$.
 - (dc) Show that if Y is a subspace of U and $Y \subseteq \operatorname{im} T$ then $Y = T(T^{-1}(Y))$.
- (e) Conclude from (c) and (d) that there is a one-to-one correspondence between subspaces of V that contain ker T and subspaces of U that are contained in T.

{subspaces of V containing ker T} \longleftrightarrow {subspaces of U contained in im T}

Exercise F.3.6. — Let \mathbb{F} be a field.

(a) Let W be a subspace of an \mathbb{F} -vector space V. The **inclusion** is the function

Show that $\iota: W \to V$ is a well defined injective linear transformation.

ι

(b) Let W be a subspace of a \mathbb{F} -vector space V. The **quotient map** is the function

$$\begin{array}{rcccc} \pi \colon & V & \to & V/W \\ & v & \mapsto & v+W. \end{array}$$

Show that $\pi: V \to V/W$ is a well defined surjective linear transformation and that $\operatorname{im} \pi = V/W$ and $\operatorname{ker} \pi = W$.

- (c) Let U be a subspace of V. Show that
 - (ca) $U/W = \{u + W \mid u \in U\}$ is a subspace of V/W.
 - (cb) $U/W = \pi(U)$ and if U contains W then $\pi^{-1}(\pi(U)) = U$.
 - (cc) Conclude that there is a one-to-one correspondence

{subspaces of V containing W} \longleftrightarrow {subspaces of V/W}.

Exercise F.3.7. — Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let W be a subspace of V and let U be a subspace of V containing W. Then, by Ex. F.3.6(ca), U/W is a subspace of V/W.

Let $\frac{V/W}{U/W}$ be the quotient space and let

$$\pi_2 \colon V/W \to \frac{V/W}{U/W}$$
 be the quotient map.

Let $\pi_1: V \to V/W$ be the quotient map so that

$$(\pi_1 \circ \pi_2) \colon V \xrightarrow{\pi_1} V/W \xrightarrow{\pi_2} \frac{V/W}{U/W}.$$

- (a) Show that $\operatorname{im}(\pi_1 \circ \pi_2) = \frac{V/W}{U/W}$.
- (b) Show that $\ker(\pi_1 \circ \pi_2) = U'$.
- (c) Using Theorem F.2.6(c), conclude that $V/U \simeq \frac{V/W}{U/W}$ as vector spaces.

Exercise F.3.8. — Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let W be a subspace of V and let U be any subspace of V. Let

$$\begin{array}{rcccc} \pi\colon & U & \to & V/W \\ & u & \mapsto & u+W \end{array}$$

be the restriction of the quotient map $\pi: V \to V/W$ to U.

- (a) Show that $\ker \pi = U \cap W$.
- (b) Show that $\operatorname{im} \pi = \frac{U+W}{W} = \{u+W \mid u \in U\}.$ U U + U
- (c) Using Theorem F.2.6(c), conclude that $\frac{U}{U \cap W} \simeq \frac{U+W}{W}$.

Exercise F.3.9. — Let \mathbb{F} be a field. Let W_1 be a subspace of an \mathbb{F} -vector space V_1 and let W_2 be a subspace of an \mathbb{F} -vector space V_2 .

(a) Show that $W_1 \oplus W_2$ is a subspace of the \mathbb{F} -vector space $V_1 \oplus V_2$.

(b) Let $\pi_1: V_1 \to V_1/W_1$ and $\pi_2: V_2 \to V_2/W_2$ be the quotient maps. Define a map $(\pi_1 \oplus \pi_2): V_1 \oplus V_2 \to V_1/W_1 \oplus V_2/W_2$ $(v_1, v_2) \mapsto (v_1 + W_1, v_2 + W_2).$

Show that $\pi_1 \oplus \pi_2$ is a well defined surjective linear transformation. (c) Show that $\ker(\pi_1 \oplus \pi_2) = W_1 \oplus W_2$. (d) Using Theorem F.2.6(c), conclude that

$$\frac{V_1 \oplus V_2}{W_1 \oplus W_2} \simeq \frac{V_1}{W_1} \oplus \frac{V_2}{W_2}.$$