F.3. Exercises: Vector spaces

Exercise F.3.1. - Let \mathbb{F} be a field.
(a) Show that the intersection of two subspaces of an \mathbb{F}-vector space V is a subspace of V.
(b) Give an example to show that the union of two subspaces of an \mathbb{F}-vector space V is not necessarily a subspace of V.
(c) Let W and U be subspaces of an \mathbb{F}-vector space V. Show that $W+U=\{w+u \mid$ $w \in W$ and $u \in U\}$ is a subspace of V.
(d) Let W and U be subspaces of an \mathbb{F}-vector space V. Show that $V \simeq W \oplus U$ if and only if $W \cap U=(0)$ and $V=W+U$.

Exercise F.3.2. - Let V be an \mathbb{F}-vector space and let S be a subset of V. Let \mathcal{W} be the set of subspaces W of V such that $S \subseteq W$. Define

$$
W_{S}=\bigcap_{W \in \mathcal{W}} W
$$

(a) Show that W_{S} is a subspace of V.
(b) Show that $S \subseteq W_{S}$ since $S \subseteq W$ for every $W \in \mathcal{W}$.
(c) Show that if W is a subspace of V and $S \subseteq W$ then $W \supseteq W_{S}$.

Exercise F.3.3. - Let V be an \mathbb{F}-vector space and let S be a subset of V. A linear combination of elements of S is an element of V of the form

$$
\sum_{s \in S} c_{s} s
$$

where $c_{s} \in \mathbb{F}$ and all but a finite number of the values c_{s} are equal to 0 (the set S may be infinite but we do not want to take infinite sums).
(a) Let W be a subspace of V. Show that a linear combination of elements of W is an element of W.
(b) Give an example of a vector space V, a subset $S \subseteq W$, and a linear combination v of elements of S such that $v \notin S$.
(c) Let S be a subset of V and let L_{S} be the set of all linear combinations of elements of S.
(ca) Show that L_{S} is a subspace of V.
(cb) Show that $L_{S}=\operatorname{span}_{\mathbb{F}}(S)$.
Exercise F.3.4. - Let \mathbb{F} be a field. A column vector of length n is an $n \times 1$ array

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \quad \text { of elements } c_{i} \in \mathbb{F}
$$

Define an addition operation on column vectors by

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)+\left(\begin{array}{c}
c_{1}^{\prime} \\
c_{2}^{\prime} \\
\vdots \\
c_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
c_{1}+c_{1}^{\prime} \\
c_{2}+c_{2}^{\prime} \\
\vdots \\
c_{n}+c_{n}^{\prime}
\end{array}\right)
$$

Define an action of \mathbb{F} on column vectors by

$$
c\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
c c_{1} \\
c c_{2} \\
\vdots \\
c c_{n}
\end{array}\right)
$$

The action of \mathbb{F} is scalar multiplication.
Show that the set \mathbb{F}^{n} of column vectors of length n is an \mathbb{F}-vector space.
Exercise F.3.5. - Let $T: V \rightarrow U$ be a linear transformation.
(a) Let $W \subseteq V$ be a subspace of V and define

$$
T(W)=\{T(w) \mid w \in W\} .
$$

(aa) Show that $T(W) \subseteq i m T=T(V)$.
(ab) Show that $T(W)$ is a subspace of U.

$$
\begin{array}{llc}
V & \xrightarrow{T} & U \\
W & \longmapsto & T(W) \\
\bigcap & & \bigcap \\
V & \longmapsto & T(V)=\operatorname{im} T .
\end{array}
$$

(b) Let Y be a subspace of U and define

$$
T^{-1}(Y)=\{v \in V \mid T(v) \in Y\} .
$$

(ba) Show that $T^{-1}(Y) \supseteq \operatorname{ker} T=T^{-1}((0))$.
(bb) Show that $T^{-1}(Y)$ is a subspace of V.

V	\xrightarrow{T}	U
$T^{-1}(Y)$	\longmapsto	Y
U		$\bigcup \mid$
$\operatorname{ker} T=T^{-1}((0))$	\longmapsto	(0).

(c) (ca) Let W be a subspace of V and show that $W \subseteq T^{-1}(T(W))$.
(cb) Give an example of a linear transformation $T: V \rightarrow U$ and a subspace W of V such that $W \neq T^{-1}(T(W))$.
(cc) Show that if W is a subspace of V that contains ker T then $W=T^{-1}(T(W))$.
(d) (da) Let Y be a subspace of U and show that $T\left(T^{-1}(Y)\right) \subseteq Y$.
(db) Give an example of a linear transformation $T: V \rightarrow U$ and a subspace Y such that $T\left(T^{-1}(Y)\right) \neq Y$.
(dc) Show that if Y is a subspace of U and $Y \subseteq \operatorname{im} T$ then $Y=T\left(T^{-1}(Y)\right)$.
(e) Conclude from (c) and (d) that there is a one-to-one correspondence between subspaces of V that contain ker T and subspaces of U that are contained in im T.
\{subspaces of V containing $\operatorname{ker} T\} \quad \longleftrightarrow \quad$ \{subspaces of U contained in im T \}

Exercise F.3.6. - Let \mathbb{F} be a field.
(a) Let W be a subspace of an \mathbb{F}-vector space V. The inclusion is the function

$$
\begin{aligned}
\iota: \quad W & \rightarrow V \\
w & \mapsto w .
\end{aligned}
$$

Show that $\iota: W \rightarrow V$ is a well defined injective linear transformation.
(b) Let W be a subspace of a \mathbb{F}-vector space V. The quotient map is the function

$$
\begin{aligned}
\pi: \quad V & \rightarrow V / W \\
& v
\end{aligned} \mapsto \quad v+W .
$$

Show that $\pi: V \rightarrow V / W$ is a well defined surjective linear transformation and that $\operatorname{im} \pi=V / W$ and $\operatorname{ker} \pi=W$.
(c) Let U be a subspace of V. Show that
(ca) $U / W=\{u+W \mid u \in U\}$ is a subspace of V / W.
(cb) $U / W=\pi(U)$ and if U contains W then $\pi^{-1}(\pi(U))=U$.
(cc) Conclude that there is a one-to-one correspondence

$$
\{\text { subspaces of } V \text { containing } W\} \quad \longleftrightarrow \quad\{\text { subspaces of } V / W\} \text {. }
$$

Exercise F.3.7. - Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let W be a subspace of V and let U be a subspace of V containing W. Then, by Ex. F.3.6(ca), U / W is a subspace of V / W.
Let $\frac{V / W}{U / W}$ be the quotient space and let

$$
\pi_{2}: V / W \rightarrow \frac{V / W}{U / W} \quad \text { be the quotient map. }
$$

Let $\pi_{1}: V \rightarrow V / W$ be the quotient map so that

$$
\left(\pi_{1} \circ \pi_{2}\right): V \xrightarrow{\pi_{1}} V / W \xrightarrow{\pi_{2}} \frac{V / W}{U / W} .
$$

(a) Show that $\operatorname{im}\left(\pi_{1} \circ \pi_{2}\right)=\frac{V / W}{U / W}$.
(b) Show that $\operatorname{ker}\left(\pi_{1} \circ \pi_{2}\right)=U$.
(c) Using Theorem F.2.6(c), conclude that $V / U \simeq \frac{V / W}{U / W}$ as vector spaces.

Exercise F.3.8. - Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let W be a subspace of V and let U be any subspace of V. Let

$$
\begin{aligned}
\pi: \quad U & \rightarrow V / W \\
u & \mapsto u+W
\end{aligned}
$$

be the restriction of the quotient map $\pi: V \rightarrow V / W$ to U.
(a) Show that $\operatorname{ker} \pi=U \cap W$.
(b) Show that $\operatorname{im} \pi=\frac{U+W}{W}=\{u+W \mid u \in U\}$.
(c) Using Theorem F.2.6(c), conclude that $\frac{U}{U \cap W} \simeq \frac{U+W}{W}$.

Exercise F.3.9. - Let \mathbb{F} be a field. Let W_{1} be a subspace of an \mathbb{F}-vector space V_{1} and let W_{2} be a subspace of an \mathbb{F}-vector space V_{2}.
(a) Show that $W_{1} \oplus W_{2}$ is a subspace of the \mathbb{F}-vector space $V_{1} \oplus V_{2}$.
(b) Let $\pi_{1}: V_{1} \rightarrow V_{1} / W_{1}$ and $\pi_{2}: V_{2} \rightarrow V_{2} / W_{2}$ be the quotient maps. Define a map

$$
\begin{array}{lllc}
\left(\pi_{1} \oplus \pi_{2}\right): & V_{1} \oplus V_{2} & \rightarrow & V_{1} / W_{1} \oplus V_{2} / W_{2} \\
& \left(v_{1}, v_{2}\right) & \mapsto & \left(v_{1}+W_{1}, v_{2}+W_{2}\right) .
\end{array}
$$

Show that $\pi_{1} \oplus \pi_{2}$ is a well defined surjective linear transformation.
(c) Show that $\operatorname{ker}\left(\pi_{1} \oplus \pi_{2}\right)=W_{1} \oplus W_{2}$.
(d) Using Theorem F.2.6(c), conclude that

$$
\frac{V_{1} \oplus V_{2}}{W_{1} \oplus W_{2}} \simeq \frac{V_{1}}{W_{1}} \oplus \frac{V_{2}}{W_{2}} .
$$

