G.2. Group actions

Definition G.2.1. — Let G be a group.

- A G-set, or action of G, is a set S with a function $\alpha: G \times S \to S$ (the convention is to write gs for $\alpha(g, s)$) such that
 - (a) if $g, h \in G, s \in S$ then g(hs) = (gh)s,
 - (b) if $s \in S$ then 1s = s.

Examples of group actions are given below in this section and in the Exercises. One application of group actions is for proving the Sylow Theorems. See §XX.

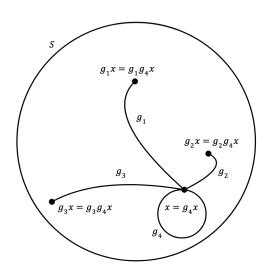
Definition G.2.2. — Let S be a G-set and let $s \in S$.

• The stabilizer of s is the set

$$\operatorname{Stab}_G(s) = \{ g \in G \mid gs = s \}.$$

• The **orbit of** *s* is the set

$$Gs = \{gs \mid g \in G\}.$$



Proposition G.2.1. — Let S be a G-set. Let $s \in S$ and $g \in G$. Then

- (a) $\operatorname{Stab}_G(s)$ is a subgroup of G.
- (b) $\operatorname{Stab}_G(gs) = g(\operatorname{Stab}_G(s))g^{-1}$.

The following proposition is an analogue of Proposition F.2.2 and Proposition R.1.2 and Proposition R.2.2 and Proposition G.1.2.

Proposition G.2.2. — Let G be a group which acts on a set S. Then the orbits partition the set S.

Corollary G.2.3. — If G is a group acting on a set S and Gs_i denote the orbits of the action of G on S then

$$\operatorname{Card}(S) = \sum_{\text{distinct orbits}} \operatorname{Card}(Gs_i).$$

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

It is possible to view the stabilizer G_s of an element $s \in S$ as an analogue of the kernel of a homomorphism and the orbit Gs of an element $s \in S$ as an analogue of the image of a homomorphism. One might say

	group actions $\alpha \colon G \times S \to S$	are to	group homomorphisms $f: G \to H$,
as	stabilizers $\operatorname{Stab}_G(s)$	are to	kernels ker f ,
as	orbits Gs	are to	images $\operatorname{im} f$.

From this point of view the following corollary is an analogue of Corollary G.1.4.

Proposition G.2.4. — Let G be a group acting on a set S and let $s \in S$. If Gs is the orbit containing s and $G_s = \operatorname{Stab}_G(s)$ is the stabilizer of s then

$$\operatorname{Card}(G/G_s) = \operatorname{Card}(Gs),$$

where G/G_s is the set of cosets of G_s in G.

Corollary G.2.5. — Let G be a group acting on a set S. Let $s \in S$, let $\operatorname{Stab}_G(s)$ denote the stabilizer of s and let Gs denote the orbit of s. Then

 $\operatorname{Card}(G) = \operatorname{Card}(Gs)\operatorname{Card}(\operatorname{Stab}_G(s)).$

G.2.1. Normalizers: The conjugation action on subsets. —

Definition G.2.3. —

• Let S be a subset of a group G. The **normalizer** of S in G is the set

 $N(S) = \{ x \in G \mid xSx^{-1} = S \}, \quad \text{where } xSx^{-1} = \{ xsx^{-1} \mid s \in S \}.$

Proposition G.2.6. — Let H be a subgroup of G and let N(H) be the normalizer of H in G. Then

- (a) H is a normal subgroup of N(H).
- (b) If K is a subgroup of G such that $H \subseteq K \subseteq G$ and H is a normal subgroup of K then $K \subseteq N(H)$.

Proposition G.2.6 says that N_H is the largest subgroup of G such that H is normal in N_H .

Proposition G.2.7. — Let G be a group and let S be the set of subsets of G. Then (a) G acts on S by

$$\begin{array}{rcccc} \alpha \colon & G \times \mathcal{S} & \to & \mathcal{S} \\ & (g,S) & \mapsto & gSg^{-1} \end{array} \qquad where \; gSg^{-1} = \{gsg^{-1} \mid s \in S\}. \end{array}$$

We say that G acts on S by conjugation. (b) If S is a subset of G then

 $N_G(S)$ is the stabilizer of S under the action of G on S

by conjugation.

G.2.2. Conjugacy classes and centralizers: The conjugation action on elements. —

Definition G.2.4. — Let G be a group.

- Two elements $g_1, g_2 \in G$ are **conjugate** if there exists $h \in G$ such that $g_1 = hg_2h^{-1}$.
- Let G be a group and let $g \in G$. The **conjugacy class** of g is the set \mathcal{C}_g of conjugates of g.
- Let $g \in G$. The **centralizer** of g is the set

$$Z_G(g) = \{ x \in G \mid xgx^{-1} = g \}.$$

Proposition G.2.8. — Let G be a group. Then (a) G acts on G by

$$\begin{array}{rccc} G\times G & \to & G \\ (g,s) & \mapsto & gsg^{-1} \end{array}$$

We say that G acts on itself by conjugation.

(b) Two elements $g_1, g_2 \in G$ are conjugate if and only if they are

in the same orbit under the action of G on itself

by conjugation.

(c) Let $g \in G$. The conjugacy class \mathcal{C}_g of g is

the orbit of g under the action of G on itself

by conjugation.

(d) Let $g \in G$. The centralizer $Z_G(g)$ of g is

the stablilizer of g under the action of G on itself

by conjugation.

Definition G.2.5. — Let G be a group.

• Let S be a subset of G. The **centralizer** of S in G is the set

 $Z_G(S) = \{ x \in G \mid \text{if } s \in S \text{ then } xsx^{-1} = s \}.$

Lemma G.2.9. — Let $\operatorname{Stab}_G(s)$ be the stabilizer of $s \in G$ under the action of G on itself by conjugation. Then

(a) For each subset $S \subseteq G$,

$$Z_G(S) = \bigcap_{s \in S} \operatorname{Stab}_G(s).$$

- (b) $Z(G) = Z_G(G)$, where Z(G) denotes the center of G.
- (c) $s \in Z(G)$ if and only if $Z_G(s) = G$.
- (d) $s \in Z(G)$ if and only if $C_s = \{s\}$.

Proposition G.2.10. — (The Class Equation) Let C_{g_i} denote the conjugacy classes in a group G. Then

$$\operatorname{Card}(G) = \operatorname{Card}(Z(G)) + \sum_{\operatorname{Card}(\mathcal{C}_{g_i}) > 1} \operatorname{Card}(\mathcal{C}_{g_i}).$$