CHAPTER S

EXAMPLES OF GROUPS

S.1. Cyclic groups

Definition S.1.1. -

- A cyclic group is a group G that contains an element $g \in G$ such that the group generated by g is $G,\langle g\rangle=G$.

The following facts follow from the definition.
(1) If G is cyclic with generator g then all elements of G are of the form

$$
g^{k}=\underbrace{g \cdot g \cdots g}_{k \text { times }} \quad \text { or } \quad g^{-k}=\underbrace{g^{-1} g^{-1} \cdots g^{-1}}_{k \text { times }}
$$

with $k \in \mathbb{Z}_{\geqslant 0}$.
(2) If G is cyclic with generator g and G is finite and $\operatorname{Card}(G)=n$ then

$$
G=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\} .
$$

(3) If G is cyclic then G is abelian since if $i, j \in \mathbb{Z}$ then $g^{i} g^{j}=g^{i+j}=g^{j} g^{i}$.
(4) If G is cyclic then all subgroups of G are normal since G is abelian.

HW: Let G be a group of order p, where p is a prime. Show that G is cyclic.

S.1.1. The integers \mathbb{Z}. -

Definition S.1.2. -

- The group of integers \mathbb{Z} is the set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ with the operation of addition.

HW: Show that \mathbb{Z} is an abelian group.
HW: Show that both the element $1 \in \mathbb{Z}$ and the element $-1 \in \mathbb{Z}$ generate \mathbb{Z}.
HW: Show that \mathbb{Z} is a cyclic group.
HW: Show that every element of \mathbb{Z} is in a conjugacy class by itself.
S.1.1.1. Subgroups and cosets. -

Theorem S.1.1. -
(a) Let H be a subset of the integers \mathbb{Z}. Then H is a subgroup of \mathbb{Z} if and only if there exists $m \in \mathbb{Z}_{\geqslant 0}$ such that $H=m \mathbb{Z}$.
(b) Let $m, n \in \mathbb{Z}_{\geqslant 0}$. Then $m \mathbb{Z} \subseteq n \mathbb{Z}$ if and only if n divides m.
(c) Let $n \in \mathbb{Z}_{\geqslant 0}$. Then the quotient group $\mathbb{Z} / n \mathbb{Z}$ is a cyclic group with n elements.

HW: Show that every subgroup of \mathbb{Z} is normal subgroup of \mathbb{Z}.
Example. The subgroup $5 \mathbb{Z}$ of the integers \mathbb{Z} consists of all multiples of 5 .

$$
5 \mathbb{Z}=\{\ldots,-10,-5,0,5,10, \ldots\}
$$

The subgroup $15 \mathbb{Z}$ is contained in the subgroup $5 \mathbb{Z}$.

$$
5 \mathbb{Z}=\{\ldots,-10,-5,0,5,10,15, \ldots\} \supseteq 15 \mathbb{Z}=\{\ldots,-30,-15,0,15,30, \ldots\}
$$

The sets

$$
\begin{aligned}
& 0+5 \mathbb{Z}=5+5 \mathbb{Z}=10+5 \mathbb{Z}=\{\ldots,-10,-5,0,5,10, \ldots\}=5 \mathbb{Z} \\
& 1+5 \mathbb{Z}=-4+5 \mathbb{Z}=-9+5 \mathbb{Z}=\{\ldots,-9,-4,1,6,11,16, \ldots\} \\
& 2+5 \mathbb{Z}=32+5 \mathbb{Z}=-23+5 \mathbb{Z}=\{\ldots,-13,-8,-3,2,7,12,17,22,27,32, \ldots\} \\
& 3+5 \mathbb{Z}=-7+5 \mathbb{Z}=8+5 \mathbb{Z}=\{\ldots,-7,-2,3,8,13, \ldots\} \\
& 4+5 \mathbb{Z}=404+5 \mathbb{Z}=-236+5 \mathbb{Z}=\{\ldots,-6,-1,4,9,14, \ldots\}
\end{aligned}
$$

are cosets of the subgroup $5 \mathbb{Z}$ in the group \mathbb{Z}. In fact

$$
\mathbb{Z} / 5 \mathbb{Z}=\{0+5 \mathbb{Z}, 1+5 \mathbb{Z}, 2+5 \mathbb{Z}, 3+5 \mathbb{Z}, 4+5 \mathbb{Z}\}
$$

is the set of cosets of $5 \mathbb{Z}$ in \mathbb{Z}. As a group $\mathbb{Z} / 5 \mathbb{Z}$ is a cyclic group with 5 elements.

S.1.1.2. Homomorphisms. -

Proposition S.1.2. - A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is a group homomorphism if and only if there exists $m \in \mathbb{Z}$ such that $f=\varphi_{m}$, where

$$
\begin{aligned}
\varphi_{m}: & \mathbb{Z}
\end{aligned} \rightarrow \mathbb{Z} \quad \text { for } m \in \mathbb{Z} .
$$

HW: Show that $\operatorname{ker} \varphi_{m}=\mathbb{Z}$ if $m=0$.
HW: Show that φ_{m} is injective if $m \neq 0$.
HW: Show that φ_{m} is bijective if and only if $m=1$ or $m=-1$.
HW: Show that $\varphi_{1}=\mathrm{id}_{\mathbb{Z}}$, is the identity mapping.
HW: Show that the automorphism group of $\mathbb{Z}, \operatorname{Aut}(\mathbb{Z})=\left\{\varphi_{1}, \varphi_{-1}\right\} \simeq \mathcal{Z}_{2}$.
HW: Show that inner automorphisms of \mathbb{Z} are $\operatorname{Inn}(\mathbb{Z})=\left\{\varphi_{1}\right\}$.
S.1.1.3. Presentations. -

Proposition S.1.3. - The group of integers \mathbb{Z} is isomorphic to the free group on one generator.

S.1.2. The finite cyclic groups μ_{n}. -

Definition S.1.3. - Let $n \in \mathbb{Z}_{\geqslant 1}$ and let g be a symbol. If $a \in \mathbb{Z}$ let $a \bmod n$ denote the element $r \in\{0,1, \ldots, n-1\}$ such that $a=b n+r$ with $b \in \mathbb{Z}$.

- The cyclic group of order n, or n-clock, is the set
$\mathcal{Z}_{n}=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\} \quad$ with the operation given by $\quad g^{i} g^{j}=g^{(i+j) \bmod n}$.
There are other favorite instances of the n-clock.
(1) Let μ_{n} be the group given by $\mu_{n}=\left\{1, \xi, \xi^{2}, \ldots, \xi^{n-1}\right\}$, where $\xi=e^{\frac{2 \pi i}{n}} \in \mathbb{C}$, with the operation of multiplication of complex numbers. In the complex plane the elements of μ_{n} all lie on the circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$.

The group μ_{5}
(2) Let $\mathbb{Z} / n \mathbb{Z}$ be the group given by $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$ with operation given by $\bar{i}+\bar{j}=\overline{(i+j) \bmod n}$. This operation is addition modulo n.

HW: Show that the group homomorphism $\phi: \mathcal{Z}_{n} \rightarrow \mu_{n}$ given by $\phi\left(g^{i}\right)=\xi^{i}$ is an isomorphism.

HW: Show that the group homomorphism $\varphi: \mu_{n} \rightarrow \mathbb{Z} / n \mathbb{Z}$ given by $\varphi\left(\xi^{i}\right)=\bar{i}$ is an isomorphism.

S.1.2.1. Subgroups and cosets. -

Theorem S.1.4. - Let $n \in \mathbb{Z}_{\geqslant 1}$ and let $\mathcal{Z}_{n}=\left\{1, g, \ldots, g^{n-1}\right\}$ be the n-clock.
(a) The subgroups of \mathcal{Z}_{n} are the subgroups generated by the elements g^{m},

$$
\left\langle g^{m}\right\rangle \quad \text { with } \quad m \in\{0,1, \ldots, n-1\} .
$$

(b) Let $m \in\{0,1, \ldots, n-1\}$ and let $d=\operatorname{gcd}(m, n)$. Then

$$
\left\langle g^{m}\right\rangle=\left\langle g^{d}\right\rangle \quad \text { where } d=\operatorname{gcd}(m, n), \quad \text { and } \quad \operatorname{Card}\left(\left\langle g^{d}\right\rangle\right)=n / d
$$

(c) Let $m, k \in\{0,1, \ldots, n-1\}$. Then

$$
\left\langle g^{m}\right\rangle \subseteq\left\langle g^{k}\right\rangle \quad \text { if and only if } \operatorname{gcd}(k, n) \text { divides } \operatorname{gcd}(m, n)
$$

(d) Let $d \in\{0,1, \ldots, n\}$ and suppose that d divides n. Then the quotient group

$$
\frac{\mathcal{Z}_{n}}{\left\langle g^{d}\right\rangle} \simeq \mathcal{Z}_{n / d}
$$

Example. The subgroup lattice of the group \mathcal{Z}_{12} is given by: FIX THIS PICTURE

The set of cosets $\mathcal{Z}_{12} /\left\langle g^{3}\right\rangle=\left\{H, g H, g^{2} H\right\}$, where

$$
H=\left\{1, g^{3}, g^{6}, g^{9}\right\}, \quad g H=\left\{g, g^{4}, g^{7}, g^{10}\right\}, \quad \text { and } \quad g^{2} H=\left\{g^{2}, g^{5}, g^{8}, g^{11}\right\} .
$$

Proposition S.1.5. - Let $\mathbb{C}^{\times}=\mathbb{C}-\{0\}$ with the operation of multiplication of complex numbers and let n be a positive integer. Every homomorphism from \mathcal{Z}_{n} to \mathbb{C}^{\times}is of the form

$$
\begin{aligned}
\varphi_{k}: \quad \mathcal{Z}_{n} & \rightarrow \mathbb{C}^{\times} \\
g & \mapsto \xi^{k}
\end{aligned} \quad \text { where } \quad \xi=e^{\frac{2 \pi i}{n}} \text { and } k \in\{0,1, \ldots, n-1\} .
$$

S.1.2.2. Presentation. -

Proposition S.1.6. - The cyclic group \mathcal{Z}_{n} has a presentation with generator g and relation

$$
g^{n}=1 .
$$

S.1.2.3. The action of \mathcal{Z}_{n} on an n-necklace. -

Proposition S.1.7. - Let S be a circular necklace with n equally spaced beads $b_{0}, b_{1}, \ldots, b_{n-1}$, numbered counterclockwise around S.
(a) There is an action of the cyclic group \mathcal{Z}_{n} on the necklace S such that g acts by rotating S counterclockwise by an angle of $2 \pi / n$.
(b) This action has one orbit, $\mathcal{Z}_{n} b_{0}=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$ and the stabilizer of each bead is the subgroup (1).

S.2. The dihedral groups $D_{n}, n \geqslant 2$

Definition S.2.1. -

- The dihedral group is the set $D_{n}=\left\{1, x, x^{2}, \ldots, x^{n-1}, y, x y, x^{2} y, \ldots, x^{n-1} y\right\}$ with the operation given by

$$
\left(x^{i} y^{j}\right)\left(x^{k} y^{l}\right)=x^{(i+k) \bmod n} y^{(j+l) \bmod 2} .
$$

HW: Show that the cardinality of the dihedral group D_{n} is $2 n$.

Proposition S.2.1. - The orders of the elements in the dihedral group D_{n} are

$$
o(1)=1, \quad o\left(x^{k}\right)=\operatorname{gcd}(k, n), \quad \text { and } \quad o\left(x^{k} y\right)=2 \quad \text { for } k \in\{0,1, \ldots, n-1\} .
$$

S.2.1. Conjugacy classes, normal subgroups, and the center. -

Proposition S.2.2. -
(a) The conjugacy classes of the dihedral group D_{2} are the sets

$$
\mathcal{C}_{1}=\{1\}, \quad \mathcal{C}_{x}=\{x\}, \quad \mathcal{C}_{y}=\{y\}, \quad \text { and } \quad \mathcal{C}_{x y}=\{x y\} .
$$

(b) If n is even and $n \neq 2$, then the conjugacy classes of the dihedral group D_{n} are the sets

$$
\begin{array}{ll}
\mathcal{C}=\{1\}, \quad \mathcal{C}_{x^{n / 2}}=\left\{x^{n / 2}\right\}, & \mathcal{C}_{x^{k}}=\left\{x^{k}, x^{-k}\right\}, \quad \text { for } k \in\{0,1, \ldots, n / 2\}, \\
\mathcal{C}_{y}=\left\{y, x^{2} y, x^{4} y, \ldots, x^{n-2} y\right\}, & \mathcal{C}_{x y}=\left\{x y, x^{3} y, x^{5} y, \ldots, x^{n-1} y\right\} .
\end{array}
$$

(c) If n is odd then the conjugacy classes of the dihedral group D_{n} are the sets

$$
\begin{aligned}
& \mathcal{C}_{1}=\{1\}, \quad \mathcal{C}_{x^{k}}=\left\{x^{k}, x^{-k}\right\} \quad \text { for } k \in\{0,1, \ldots, n / 2\}, \quad \text { and } \\
& \mathcal{C}_{y}=\left\{y, x y, x^{2} y, x^{3} y, \ldots, x^{n-1} y\right\} .
\end{aligned}
$$

Proposition S.2.3. - Let $\langle a, b, \cdots\rangle$ denote the subgroup generated by elements a, b, \ldots
(a) The normal subgroups of the dihedral group D_{2} are the subgroups

$$
\langle x\rangle, \quad\langle y\rangle \quad \text { and } \quad\langle x y\rangle .
$$

(b) If n is even and $n \neq 2$ then the normal subgroups of the dihedral group D_{n} are the subgroups

$$
\left\langle x^{k}\right\rangle \quad \text { for } k \in\{0,1, \ldots, n-1\} \quad \text { and } \quad\left\langle x^{2}, y\right\rangle \quad \text { and } \quad\left\langle x^{2}, x y\right\rangle .
$$

(c) If n is odd then the normal subgroups of the dihedral group D_{n} are the subgroups

$$
\left\langle x^{k}\right\rangle \quad \text { for } k \in\{1, \ldots, n-1\} .
$$

Proposition S.2.4. -
(a) The center of the dihedral group D_{2} is the subgroup $Z\left(D_{2}\right)=D_{2}$.
(b) If n is even and $n \neq 2$ then the center of the dihedral group D_{n} is the subgroup $Z\left(D_{n}\right)=\left\{1, x^{n / 2}\right\}$.
(c) If n is odd then the center of the dihedral group D_{n} is the subgroup $Z\left(D_{n}\right)=\{1\}$.

[^0]
S.2.2. The action of D_{n} on an n-gon. -

Proposition S.2.5. - Let F be an n-gon with vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ numbered counterclockwise around F. Then there is an action of the group D_{n} on the n-gon F such that
x acts by rotating the n-gon by an angle of $2 \pi / n$;
y acts by reflecting about the line which contains the vertex v_{0} and the center of F.

S.2.3. Generators and relations. -

Theorem S.2.6. - The dihedral group D_{n} has a presentation by generators x, y and relations

$$
x^{n}=1, \quad y^{2}=1, \quad \text { and } \quad y x=x^{-1} y .
$$

S.3. The symmetric groups S_{m}

Definition S.3.1. -

- Let $\mathbb{Z}_{[1, m]}$ denote the set $\{1,2, \ldots, m\}$. A permutation of m is a bijective map

$$
\sigma: \quad \mathbb{Z}_{[1, m]} \rightarrow \mathbb{Z}_{[1, m]}
$$

- The symmetric group S_{m} is the set of permutations of m with the operation of composition of functions.

HW: Show that the cardinality of the symmetric group S_{m} is $m!=m(m-1)(m-2) \cdots 2 \cdot 1$.
There are several convenient ways of representing a permutation σ.
(1) As a two line array $\sigma=\left(\begin{array}{ccccc}1 & 2 & 3 & \ldots & m \\ \sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(m)\end{array}\right)$.
(2) As a one line array $\sigma=(\sigma(1) \sigma(2) \ldots \sigma(m))$.
(3) As an $m \times m$ matrix which has the $(\sigma(i), i)^{\text {th }}$ entry equal to 1 for all i and all other entries equal to 0 .
(4) As a function diagram consisting of two rows, of m dots each, such that the $i^{\text {th }}$ dot of the upper row is connected by an edge to the $\sigma(i)^{\text {th }}$ dot of the lower row.
(5) In cycle notation, as a collection of sequences $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $\sigma\left(i_{1}\right)=i_{2}$, $\sigma\left(i_{2}\right)=i_{3}, \ldots, \sigma\left(i_{k-1}\right)=i_{k}, \sigma\left(i_{k}\right)=i_{1}$. We often leave out the cycles containing only one element when we write σ in cycle notation.

HW: Show that, in function diagram notation, the product $\tau \sigma$ of two permutations τ and σ is given by placing the diagram of σ above the diagram of τ and connecting the bottom dots of σ to the top dots of τ.
HW: Show that, in function diagram notation, the identity permutation is represented by m vertical lines.
HW: Show that, in function diagram notation, σ^{-1} is represented by the diagram of σ flipped over.

HW: Show that, in matrix notation, the product $\tau \sigma$ of two permutations τ and σ is given by matrix multiplication.

HW: Show that, in matrix notation, the identity permutation is the diagonal matrix with all 1's on the diagonal.
HW: Show that, in matrix notation, the matrix of σ^{-1} is the transpose of the matrix of σ.
HW: Show that the matrix of a permutation is always an orthogonal matrix.

S.3.1. Sign of a permutation. -

Proposition S.3.1. - For each permutation $\sigma \in S_{m}$, let $\operatorname{det}(\sigma)$ denote the determinant of the matrix which represents the permutation σ. The map

$$
\begin{aligned}
\varepsilon: \quad S_{m} & \rightarrow\{ \pm 1\} \\
\sigma & \mapsto \operatorname{det}(\sigma)
\end{aligned}
$$

is a homomorphism from the symmetric group S_{m} to the group $\mu_{2}=\{ \pm 1\}$.

Definition S.3.2. -

- The sign homomorphism of the symmetric group S_{m} is the homomorphism

$$
\begin{aligned}
\varepsilon: \quad S_{m} & \rightarrow\{ \pm 1\} \\
\sigma & \mapsto \operatorname{det}(\sigma)
\end{aligned}
$$

where $\operatorname{det}(\sigma)$ denote the determinant of the matrix which represents the permutation σ.

- The sign of a permutation σ is the determinant $\varepsilon(\sigma)$ of the permutation matrix representing σ.
- A permutation σ is even if $\varepsilon(\sigma)=+1$ and is odd if $\varepsilon(\sigma)=-1$.

S.3.2. Conjugacy Classes. -

Definition S.3.3. -

- A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of m is a weakly decreasing sequence of positive integers which sum to m, i.e.

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{k}>0, \quad \text { and } \quad \sum_{i=1}^{k} \lambda_{i}=m
$$

The elements of a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ are the parts of the partition λ. Sometimes we represent a partition λ in the form $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ if λ has $m_{1} 1$'s, $m_{2} 2$'s, and so on. Write $\lambda \vdash m$ if λ is a partition of m.

- The cycles of a permutation σ are the ordered sequences $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $\sigma\left(i_{1}\right)=$ $i_{2}, \sigma\left(i_{2}\right)=i_{3}, \ldots, \sigma\left(i_{k-1}\right)=i_{k}, \sigma\left(i_{k}\right)=i_{1}$.
- The cycle type $\tau(\sigma)$ of a permutation $\sigma \in S_{m}$ is the partition of m determined by the sizes of the cycles of σ.

Example. A permutation σ can have several different representations in cycle notation. In cycle notation,

$$
\begin{gathered}
(12345)(67)(89)(10), \quad(51234)(67)(89), \quad(45123)(67)(89)(10), \\
(34512)(89)(67), \quad \text { and } \quad(34512)(10)(98)(67)
\end{gathered}
$$

all represent the same permutation in S_{10}, which, in two line notation, is given by

$$
\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 3 & 4 & 5 & 1 & 7 & 6 & 9 & 8 & 10
\end{array}\right)
$$

Example. If σ is the permutation in S_{9} which is given, in cycle notation, by

$$
\sigma=(1362)(587)(49)
$$

and π is the permutation in S_{9} which is given, in 2-line notation, by

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 6 & 1 & 3 & 5 & 9 & 2 & 8 & 7
\end{array}\right)
$$

then $\pi \sigma \pi^{-1}$ is the permutation which is given, in cycle notation, by

$$
\pi \sigma \pi^{-1}=(4196)(582)(37)=(1964)(258)(37) .
$$

Theorem S.3.2. -
(a) The conjugacy classes of S_{m} are the sets

$$
\mathcal{C}_{\lambda}=\{\text { permutations } \sigma \text { with cycle type } \lambda\},
$$

where λ is a partition of m.
(b) If $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ then the size of the conjugacy class \mathcal{C}_{λ} is

$$
\operatorname{Card}\left(\mathcal{C}_{\lambda}\right)=\frac{m!}{m_{1}!1^{m_{1}} m_{2}!2^{m_{2}} m_{3}!3^{m_{3}} \ldots}
$$

The proof of Theorem S.3.2 will use the following lemma.
Lemma S.3.3. - Suppose $\sigma \in S_{m}$ has cycle type $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and let γ_{λ} be the permutation in S_{m} which is given, in cycle notation, by

$$
\gamma_{\lambda}=\left(1,2, \cdots, \lambda_{1}\right)\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+1, \cdots\right) \cdots .
$$

(a) Then σ is conjugate to γ_{λ}.
(b) If $\tau \in S_{m}$ is conjugate to σ then τ has cycle type λ.
(c) Suppose that $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$. Then the order of the stabilizer of the permutation γ_{λ}, under the action of S_{m} on itself by conjugation, is

$$
1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots .
$$

Example. The sequence $\lambda=(66433322111)$ is a partition of 32 and can also be represented in the form $\lambda=\left(1^{3} 2^{2} 3^{3} 45^{0} 6^{2}\right)=\left(1^{3} 2^{2} 3^{3} 46^{2}\right)$. The conjugacy class

$$
\mathcal{C}_{\lambda} \text { in } S_{32} \text { has } \frac{32!}{1^{3} \cdot 3!\cdot 2^{2} \cdot 2!\cdot 3^{3} \cdot 3!\cdot 4 \cdot 6^{2} \cdot 2!} \quad \text { elements. }
$$

S.3.3. Generators and relations. -

Definition S.3.4. -

- The simple transpositions in S_{m} are the elements $s_{i}=(i, i+1), 1 \leqslant i \leqslant m-1$.

Proposition S.3.4. -
(a) S_{m} is generated by the simple transpositions $s_{i}, 1 \leqslant i \leqslant m-1$.
(b) The simple transpositions $s_{i}, 1 \leqslant i \leqslant m-1$, in S_{m} satisfy the relations

$$
\begin{array}{cl}
s_{i} s_{j}=s_{j} s_{i}, & \text { if } j \notin\{i-1, i+1\}, \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, & \text { if } i \in\{1, \ldots, m-2\}, \\
s_{i}^{2}=1, & \text { if } i \in\{1, \ldots, m-1\} .
\end{array}
$$

Definition S.3.5. -

- A reduced word for $\sigma \in S_{m}$ is an expression

$$
\sigma=s_{i_{1}} \ldots s_{i_{p}}
$$

of σ as a product of simple transpositions such that the number of factors is as small as possible.

- The length $\ell(\sigma)$ of σ is the number of factors in a reduced word for the permutation σ.
- The set of inversions of σ is the set

$$
\operatorname{inv}(\sigma)=\{(i, j) \mid i, j \in\{1, \ldots, m\}, i<j \text { and } \sigma(i)>\sigma(j)\}
$$

HW: Show that the sign $\varepsilon\left(s_{i}\right)$ of a simple transposition s_{i} in the symmetric group S_{n} is -1 .

Proposition S.3.5. - Let σ be a permutation. Let $\ell(\sigma)$ be the length of σ and let $\operatorname{inv}(\sigma)$ be the set of inversions of the permutation σ. Then
(a) The sign of σ is $\varepsilon(\sigma)=(-1)^{\ell(\sigma)}$.
(b) $\operatorname{Card}(\operatorname{inv}(\sigma))=\ell(\sigma)$
(c) The number of crossings in the function diagram of σ is $\ell(\sigma)$.

Theorem S.3.6. - The symmetric group S_{m} has a presentation by generators, $s_{1}, s_{2}, \ldots, s_{m-1}$ and relations

$$
\begin{array}{cl}
s_{i} s_{j}=s_{j} s_{i}, & \text { if } j \notin\{i-1, i+1\}, \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, & \text { if } i \in\{1, \ldots, m-2\}, \\
s_{i}^{2}=1, & \text { if } i \in\{1, \ldots, m-1\} .
\end{array}
$$

S.4. Alternating group

Definition S.4.1. -

- The alternating group A_{n} is the subgroup of even permutations of S_{n}.

Proposition S.4.1. - The alternating group A_{n} is the kernel of the sign homomorphism of the symmetric group;

HW: Show that A_{n} is a normal subgroup of S_{n}.
HW: Show that $\operatorname{Card}\left(A_{n}\right)=n!/ 2$.
S.4.1. Conjugacy classes. - Since A_{n} is a normal subgroup of S_{n}, A_{n} is a union of conjugacy classes of S_{n}. Let \mathcal{C}_{λ} be a conjugacy class of S_{n} corresponding to a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Then the following Proposition says:
(1) The conjugacy class \mathcal{C}_{λ} is contained in A_{n} if an even number of the λ_{i} are even numbers.
(2) If the parts λ_{i} of λ are all odd and are all distinct then \mathcal{C}_{λ} is a union of two conjugacy classes of A_{n} and these two conjugacy classes have the same size.
(3) Otherwise \mathcal{C}_{λ} is also a conjugacy class of A_{n}.

Proposition S.4.2. - Suppose that $\sigma \in A_{n}$. Let \mathcal{C}_{σ} denote the conjugacy class of σ in S_{n} and let \mathcal{A}_{σ} denote the conjugacy class of σ in A_{n}.
(a) Then σ has an even number of cycles of even length.
(b)

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\frac{\operatorname{Card}\left(\mathcal{C}_{\sigma}\right)}{2}, & \text { if all cycles } \sigma \text { are of different odd lengths, } \\ \operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { otherwise. }\end{cases}
$$

The proof of Proposition (1.4.2) uses the following lemma.
Lemma S.4.3. - Let $\sigma \in A_{n}$ and let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ be the cycle type of σ. Let γ_{λ} be the permutation given, in cycle notation, by

$$
\gamma_{\lambda}=\left(1,2, \cdots, \lambda_{1}\right)\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+1, \cdots\right) \cdots .
$$

Let S_{σ} denote the stabilizer of σ under the action of S_{n} on itself by conjugation. Then,
(a) $S_{\sigma} \subseteq A_{n}$ if and only if $S_{\gamma_{\lambda}} \subseteq A_{n}$.
(b) $S_{\gamma_{\lambda}} \subseteq A_{n}$ if and only if γ_{λ} has all odd cycles of different lengths.
S.4.2. A_{n} is simple if $n \neq 4$. - A group is simple if it has no nontrivial normal subgroups. The trivial normal subgroups are the whole group and the subgroup containing only the identity element.
Theorem S.4.4. -
(a) If $n \neq 4$ then A_{n} is simple.
(b) The alternating group A_{4} has a single nontrivial proper normal subgroup given by

$$
N=\{(1234),(2143),(3412),(4321)\}
$$

where the permutations are represented in one-line notation.

The proof of Theorem (1.4.4) uses the following lemma.
Lemma S.4.5. - Suppose N is a normal subgroup of $A_{n}, n>4$, and N contains a 3-cycle. Then $N=A_{n}$.

S.5. Exercises for symmetric groups

Exercise 1.14.1. Let σ be a permutation in S_{m}. Show that the order of σ is the least common multiple of the lengths of its cycles.

Exercise 1.14.2. Show that the center $Z\left(S_{2}\right)=S_{2}$ and that if $m \in \mathbb{Z}_{>2}$ then the center $Z\left(S_{m}\right)=(1)$.

Exercise 1.14.3.

(a) Show that the proper normal subgroups of S_{4} are

$$
N=\{X X X X X\}
$$

(1) and the alternating group A_{4}.
(b) Show that if $m \neq 4$ then the only proper normal subgroup of S_{m} is the alternating group A_{m}.

Exercise 1.14.3. Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{m}\right\}$ be a basis of \mathbb{C}^{m}. Let S_{m} act on the vectors ε_{i} by

$$
\sigma \varepsilon_{i}=\varepsilon_{\sigma(i)}
$$

Define the sets of vectors
$\Phi^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i, j \in\{1, \ldots, m\}\right.$ and $\left.i<j\right\} \quad$ and $\quad \Phi^{-}=\left\{\varepsilon_{j}-\varepsilon_{i} \mid i, j \in\{1, \ldots, m\}\right.$ and $\left.i<j\right\}$ to be the sets of positive roots and negative roots respectively. Show that the length $\ell(\sigma)$ of a permutation σ is the same as the number of positive roots that are taken to negative roots by the action of σ.

S.6. Exercises for alternating groups

Exercise 1.14.4. Let σ be an element of A_{m}.
Show that the order of σ is the least common multiple of the lengths of the cycles of σ.
Exercise 1.14.5. What is the center of A_{m} ?
Exercise 1.14.6. Suppose that $\sigma \in A_{m}$. How can one tell if σ is conjugate to γ_{λ} in A_{m} ?
Exercise 1.14.7. Show that the elements $\gamma_{\mu}, \mu \vdash n$, and the elements $s_{1} \gamma_{\mu} s_{1}^{-1}$, where $\mu \vdash n$ is a partition with all parts odd and distinct, are a set of representatives of the conjugacy classes of A_{n}.

S.7. Proofs for cyclic groups

Theorem S.7.1. -

(a) Let H be a subset of the integers \mathbb{Z}. Then H is a subgroup of \mathbb{Z} if and only if there exists $m \in \mathbb{Z}_{\geqslant 0}$ such that $H=m \mathbb{Z}$.
(b) Let m and n be positive integers. Then $m \mathbb{Z} \subseteq n \mathbb{Z}$ if and only if n divides m.
(c) Let n be a positive integer. Then the quotient group $\mathbb{Z} / n \mathbb{Z} \simeq \mathcal{Z}_{n}$.

Proof. -
To show: (a) If H is a subgroup of \mathbb{Z} then there exists $m \in \mathbb{Z}_{\geqslant 0}$ such that $H=m \mathbb{Z}$.
(b) If m is a positive integer then $m \mathbb{Z}$ is a subgroup of \mathbb{Z}.

Theorem S.7.2. - Let \mathcal{Z}_{n} be the cyclic group of order n generated by g.
(a) The subgroups of the cyclic group \mathcal{Z}_{n} are $\left\langle g^{m}\right\rangle, 0 \leqslant m \leqslant n-1$.
(b) Let $m \in\{0,1, \ldots, n-1\}$ and let $d=\operatorname{gcd}(m, n)$. Then $\left\langle g^{m}\right\rangle=\left\langle g^{d}\right\rangle$ where $d=\operatorname{gcd}(m, n)$ and $\operatorname{Card}\left(\left\langle g^{d}\right\rangle\right)=n / d$.
(c) Let $m, k \in\{0,1, \ldots, n-1\}$. Then $\left\langle g^{m}\right\rangle \subseteq\left\langle g^{k}\right\rangle$ if and only if $\operatorname{gcd}(k, n)$ divides $\operatorname{gcd}(m, n)$.
(d) Let $d \in\{0,1, \ldots, n\}$ and suppose that d divides n. Then the quotient group

$$
\mathcal{Z}_{n} /\left\langle g^{d}\right\rangle \simeq \mathcal{Z}_{n / d}
$$

Proposition S.7.3. - Let $\mathbb{C}^{\times}=\mathbb{C}-\{0\}$ with the operation of multiplication. If $\varphi: \mathbb{Z} \rightarrow$ \mathbb{C}^{\times}is a group homomorphism then there exists $k \in\{0,1, \ldots, n-1\}$ such that $\varphi=\phi_{k}$ where

$$
\begin{aligned}
\varphi_{k}: & \rightarrow \mathbb{Z}_{n} \\
g & \mapsto \xi^{k}, \quad \text { where } \quad \xi=e^{\frac{2 \pi i}{n}} .
\end{aligned}
$$

Proposition S.7.4. - Let S be a circular necklace with n equally spaced beads $b_{0}, b_{1}, \ldots, b_{n-1}$, numbered counterclockwise around S.
(a) There is an action of the cyclic group \mathcal{Z}_{n} on the necklace S such that g acts by rotating S counterclockwise by an angle of $2 \pi / n$.
(b) This action has one orbit, $\mathcal{Z}_{n} b_{0}=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$ and the stabilizer of each bead is the subgroup (1).

[^1]Proposition S.7.5. - If $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ is a group homomorphism then there exists $m \in \mathbb{Z}$ such that $\varphi=\varphi_{m}$ where

$$
\begin{array}{rllc}
\varphi_{m}: & \mathbb{Z} & \rightarrow & \mathbb{Z} \\
& n & \mapsto & m n
\end{array}
$$

S.8. Proofs for the dihedral groups D_{n}

Proposition S.8.1. -

(a) The conjugacy classes of D_{2} are

$$
\mathcal{C}_{1}=\{1\}, \quad \mathcal{C}_{x}=\{x\}, \mathcal{C}_{y}=\{y\}, \quad \mathcal{C}_{x y}=\{x y\} .
$$

(b) If n is even and $n \neq 2$, then the conjugacy classes of D_{n} are the sets

$$
\begin{aligned}
& \mathcal{C}_{1}=\{1\}, \quad \mathcal{C}_{x^{n / 2}}=\left\{x^{n / 2}\right\}, \quad \mathcal{C}_{x^{k}}=\left\{x^{k}, x^{-k}\right\}, \quad \text { for } k \in\{0,1, \ldots, n / 2\}, \\
& \mathcal{C}_{y}=\left\{y, x^{2} y, x^{4} y, \ldots, x^{n-2} y\right\}, \quad \mathcal{C}_{x y}=\left\{x y, x^{3} y, x^{5} y, \ldots, x^{n-1} y\right\}
\end{aligned}
$$

(c) If n is odd then the conjugacy classes of D_{n} are the sets
$\mathcal{C}_{1}=\{1\} \quad \mathcal{C}_{y}=\left\{y, x y, x^{2} y, x^{3} y, \ldots, x^{n-1} y\right\} \quad$ and $\quad \mathcal{C}_{x^{k}}=\left\{x^{k}, x^{-k}\right\} \quad$ for $k \in\{0,1, \ldots, n / 2\}$.
Proof. - (Sketch of Proof.)
(a) The group D_{2} is abelian, so each element is in a conjugacy class by itself.
(b) and (c): By the multiplication rule,

$$
\begin{gathered}
x\left(x^{k}\right) x^{-1}=x^{k}, \\
y\left(x^{k}\right) y=x^{-k} y^{2}=x^{-k},
\end{gathered} \quad \text { and } \quad \begin{gathered}
x\left(x^{k} y\right) x^{-1}=x^{k+2} y, \\
y\left(x^{k} y\right)=y x^{k}=x^{-k} y .
\end{gathered}
$$

Thus, (1) if x^{k} is in a conjugacy class then x^{-k} is also in the conjugacy class, and (2) if $x^{k} y$ is in a conjugacy class then $x^{k+2} y$ and $x^{-k} y$ are also in the conjugacy class. One checks case by case that the sets given in the statement of the proposition satisfy these two properties.
Since these sets partition the group D_{n}, they must be the conjugacy classes.
Proposition S.8.2. -
(a) D_{n} is generated by the elements x and y.
(b) The elements x and y in D_{n} satisfy the relations

$$
x^{n}=1, \quad y^{2}=1, \quad y x=x^{-1} y
$$

Proof. - Both parts follow directly from the definition of the dihedral group D_{n}. THIS IS A VERY BAD PROOF.

Theorem S.8.3. - The dihedral group D_{n} has a presentation by generators x and y and relations

$$
x^{n}=1, \quad y^{2}=1, \quad y x=x^{-1} y
$$

Proposition S.8.4. - Let $\langle a, b, \cdots\rangle$ denote the subgroup generated by elements a, b, \ldots
(a) The normal subgroups of the dihedral group D_{2} are the subgroups

$$
\langle x\rangle, \quad\langle y\rangle, \quad\langle x y\rangle,
$$

(b) If n is even and $n \neq 2$ then the normal subgroups of the dihedral group D_{n} are the subgroups

$$
\left\langle x^{k}\right\rangle \quad \text { for } k \in\{0,1, \ldots, n-1\} \quad \text { and } \quad\left\langle x^{2}, y\right\rangle, \quad\left\langle x^{2}, x y\right\rangle .
$$

(c) If n is odd then the normal subgroups of the dihedral group D_{n} are the subgroups

$$
\left\langle x^{k}\right\rangle \quad \text { for } k \in\{1, \ldots, n-1\} .
$$

Proof. - The subgroups given in the statement of the proposition are unions of conjugacy classes of D_{n} as follows.

$$
\begin{aligned}
\left\langle x^{k}\right\rangle & =\bigcup \mathcal{C}_{x^{j k}} \\
\left\langle x^{2}, y\right\rangle & =\mathcal{C}_{y} \cup\left\langle x^{2}\right\rangle \\
\left\langle x^{2}, x y\right\rangle & =\mathcal{C}_{x y} \cup\left\langle x^{2}\right\rangle
\end{aligned}
$$

Thus these subgroups are normal.
It remains to show that these are all the normal subgroups.
Proposition S.8.5. - The orders of the elements in the dihedral group D_{n} are

$$
o(1)=1, \quad o\left(x^{k}\right)=\operatorname{gcd}(k, n), \quad o\left(x^{k} y\right)=2, \quad 0<k \leqslant n-1 .
$$

Proof. - This follows from the definition of the multiplication in D_{n}. THIS IS A BAD PROOF

Proposition S.8.6. - Let F be an n-gon with vertices v_{i} numbered 0 to $n-1$ counterclockwise around F. There is an action of the group D_{n} on the n-gon F such that
x acts by rotating the n-gon by an angle of $2 \pi / n$.
y acts by reflecting about the line which contains the vertex v_{0} and the center of F.
Proof. -

S.9. Proofs for the symmetric group

Proposition S.9.1. - For each permutation $\sigma \in S_{m}$, let $\operatorname{det}(\sigma)$ denote the determinant of the matrix which represents the permutation σ. The map

$$
\begin{array}{cccc}
\varepsilon: \quad S_{m} & \rightarrow & \pm 1 \\
\sigma & \mapsto & \operatorname{det}(\sigma)
\end{array}
$$

is a homomorphism from the symmetric group S_{m} to the group $\mathbb{Z}_{2}=\{ \pm 1\}$.
Proof. -
To show: (a) If σ and τ are permutation matrices then $\operatorname{det}(\sigma \tau)=\operatorname{det}(\sigma) \operatorname{det}(\tau)$.
(b) If σ is a permutation matrix then $\operatorname{det}(\sigma)= \pm 1$.
(a) This follows from Proposition (??????).
(b) Any permutation matrix is an orthogonal matrix, i.e. $\sigma \sigma^{t}=1$.

Thus, $1=\operatorname{det}\left(\sigma \sigma^{t}\right)=\operatorname{det}(\sigma) \operatorname{det}\left(\sigma^{t}\right)=\operatorname{det}(\sigma)^{2}$.
Thus $\operatorname{det}(\sigma)= \pm 1$.
Lemma S.9.2. - Suppose $\sigma \in S_{m}$ has cycle type $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and let γ_{λ} be the permutation in S_{m} which is given, in cycle notation, by

$$
\gamma_{\lambda}=\left(1,2, \cdots, \lambda_{1}\right)\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+1, \cdots\right) \cdots
$$

(a) Then σ is conjugate to γ_{λ}.
(b) If $\tau \in S_{m}$ is conjugate to σ then τ has cycle type λ.
(c) Suppose that $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$. Then the order of the stabilizer of the permutation γ_{λ}, under the action of S_{m} on itself by conjugation, is

$$
1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots
$$

Proof. -
(a) To show: σ is conjugate to $\gamma_{\lambda}=\left(1,2, \cdots, \lambda_{1}\right)\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+\right.$ $1, \cdots) \cdots$.

Suppose that, in cycle notation, $\sigma=\left(i_{1}, i_{2}, \ldots, i_{\lambda_{1}}\right)\left(i_{\lambda_{1}+1}, \ldots, i_{\lambda_{1}+\lambda_{2}}\right) \cdots$.
Let π be the permutation given by $\pi\left(i_{j}\right)=j$.
Then $\pi \sigma \pi^{-1}=\gamma_{\lambda}$.
(b) Suppose that $\tau \in S_{m}$ is conjugate to σ.

Then $\tau=\pi \sigma \pi^{-1}$ for some $\pi \in S_{m}$.
To show: The lengths of the cycles in $\pi \sigma \pi^{-1}$ are the same as the lengths of the cycles in σ.
Suppose that, in cycle notation, $\sigma=\left(i_{1}, i_{2}, \ldots, i_{\lambda_{1}}\right)\left(i_{\lambda_{1}+1}, \ldots, i_{\lambda_{1}+\lambda_{2}}\right) \cdots$.
Then $\pi \sigma \pi^{-1}\left(\pi\left(i_{j}\right)\right)=\pi\left(\sigma\left(i_{j}\right)\right)=\pi\left(i_{j+1}\right)$.
Thus, in cycle notation, $\pi \sigma \pi^{-1}=\left(\pi\left(i_{1}\right), \pi\left(i_{2}\right), \cdots, \pi\left(i_{\lambda_{1}}\right)\right)\left(\pi\left(i_{\lambda_{1}+1}\right), \ldots, \pi\left(i_{\lambda_{1}+\lambda_{2}}\right)\right) \cdots$. So, the lengths of the cycles in $\pi \sigma \pi^{-1}$ are the same as the lengths of the cycles in σ.
So, τ has cycle type λ.
(c) Suppose that $\pi \in S_{m}$ is in the stabilizer of γ_{λ}.

Then $\pi \gamma_{\lambda} \pi^{-1}=\gamma_{\lambda}$.
In cycle notation, $\pi \gamma_{\lambda} \pi^{-1}=\left(\pi(1), \pi(2), \ldots, \pi\left(\lambda_{1}\right)\right)\left(\pi\left(\lambda_{1}+1\right), \ldots, \pi\left(\lambda_{1}+\lambda_{2}\right)\right) \cdots$.
Since $\pi \gamma_{\lambda} \pi^{-1}=\gamma_{\lambda}$, it follows that each of the sequences $\left(\pi\left(\lambda_{j}+1\right), \ldots, \pi\left(\lambda_{j}+\lambda_{j+1}\right)\right)$ must be a
cyclic rearrangement of some cycle of γ_{λ}.
This means that π must be a permutation that
(1) permutes cycles of γ_{λ} of the same length and/or
(2) cyclically rearranges the elements of the cycles of γ_{λ}.

Note that,
(1) Each cycle of length k in γ_{λ} can be cyclically rearranged in k ways. Thus, there are a total of $k^{m_{k}}$ ways of cyclically rearranging the elements of the m_{k} cycles of length k in γ_{λ}.
(2) The m_{k} cycles of length k in γ_{λ} can be permuted in m_{k} ! different ways.

Thus, there are a total of $1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots$ permutations π which stabilize γ_{λ} under the action of conjugation.

Proposition S.9.3. -
(a) The conjugacy classes of S_{m} are the sets

$$
\mathcal{C}_{\lambda}=\{\text { permutations } \sigma \text { with cycle type } \lambda\},
$$

where λ is a partition of m.
(b) If $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ then the size of the conjugacy class \mathcal{C}_{λ} is

$$
\left|\mathcal{C}_{\lambda}\right|=\frac{m!}{m_{1}!1^{m_{1}} m_{2}!2^{m_{2}} m_{3}!3^{m_{3}} \ldots}
$$

Proof. -
(a) To show: (aa) If $\lambda \vdash m$ then \mathcal{C}_{λ} is a conjugacy class of S_{m}.
(ab) Every conjugacy class is equal to \mathcal{C}_{λ} for some $\lambda \vdash m$.
(aa) Let λ be a partition of m.
Let $\mathcal{O}_{\gamma_{\lambda}}$ denote the conjugacy class of γ_{λ}.
To show: $\mathcal{O}_{\lambda}=\mathcal{C}_{\lambda}$.
To show: (aaa) $\mathcal{C}_{\lambda} \subseteq \mathcal{O}_{\gamma_{\lambda}}$.
(aab) $\mathcal{C}_{\gamma_{\lambda}} \subseteq \mathcal{C}_{\lambda}$.
(aaa) Suppose that $\sigma \in \mathcal{C}_{\lambda}$.
Then σ has cycle type λ.
Thus, by Lemma (?????), σ is conjugate to γ_{λ}.
So, $\sigma \in \mathcal{O}_{\gamma_{\lambda}}$.
Thus, $\mathcal{C}_{\lambda} \subseteq \mathcal{O}_{\gamma_{\lambda}}$.
(aab) Suppose that $\sigma \in \mathcal{O}_{\gamma_{\lambda}}$.
Then, σ is conjugate to γ_{λ}.
Thus, by Lemma (????), σ has cycle type λ.
So, $\sigma \in \mathcal{C}_{\lambda}$.
So $\mathcal{O}_{\gamma_{\lambda}} \subseteq \mathcal{C}_{\lambda}$.
So $\mathcal{C}_{\lambda}=\mathcal{O}_{\gamma_{\lambda}}$.
So \mathcal{C}_{λ} is a conjugacy class of S_{m}.
(ab) Let $\sigma \in S_{m}$ and let \mathcal{O}_{σ} be the conjugacy class of σ.
Suppose that σ has cycle type λ.
Then, by Lemma (?????), σ is conjugate to γ_{λ}.
Thus, by Proposition (?????), $\mathcal{O}_{\sigma}=\mathcal{O}_{\gamma_{\lambda}}$.
So, by part (a), $\mathcal{O}_{\sigma}=\mathcal{O}_{\gamma_{\lambda}}=\mathcal{C}_{\lambda}$.
So every conjugacy class is equal to \mathcal{C}_{λ} for some $\lambda \vdash m$. So the sets $\mathcal{C}_{\lambda}, \lambda \vdash m$, are the conjugacy classes of S_{m}.
(b) Let $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ be a partition of m.

By, Lemma (???), the stabilizer of the permutation γ_{λ}, has order $1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots$. Thus, by Proposition (???), the order of the conjugacy class \mathbb{C}_{λ} is

$$
\operatorname{Card}\left(\mathcal{C}_{\lambda}\right)=\frac{\operatorname{Card}\left(S_{m}\right)}{1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots}=\frac{m!}{1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots}
$$

Proposition S.9.4. -
(a) S_{m} is generated by the simple transpositions $s_{i}, 1 \leqslant i \leqslant m-1$.
(b) The simple transpositions $\left\{s_{i} \mid i \in\{1, \ldots, m-1\}\right\}$ in S_{m} satisfy the relations

$$
\begin{array}{cl}
s_{i} s_{j}=s_{j} s_{i}, & \text { if } j \notin\left\{i_{1}, i+1\right\}, \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, \quad \text { if } i \in\{1, \ldots, m-2\}, & \\
s_{i}^{2}=1, & \text { for } i \in\{1, \ldots, m-1\} .
\end{array}
$$

Proof. - (a) To show: Every permutation σ can be written as a product of simple tranpositions.
This is most easily seen by "stretching out" the function diagram of σ.

> PICTU REstretchout.ps

We must give some argument to show that this can always be done, for an arbitrary permutation σ.

The set of inversions of σ is the set

$$
\operatorname{inv}(\sigma)=\{(i, j) \mid i, j \in\{1, \ldots, m\} \text { and } i<j \text { and } \sigma(i)>\sigma(j)\}
$$

Let k_{i} be the number of inversions of σ that have first coordinate i.
Then define

$$
\gamma(i)= \begin{cases}s_{i} s_{i+1} \ldots s_{i+k_{i}-1}, & \text { if } k_{i} \geqslant 1 \\ 1, & \text { if } k_{i}=0\end{cases}
$$

Then $\sigma=\gamma(m-1) \gamma(m-2) \cdots \gamma(1)$.

PICTU REgammadec.ps

Thus σ can be written as a product of simple transpositions.
(b) To show: (ba) If $i, j \in\{1, \ldots, m-1\}$ and $j \notin\{i-1, i+1\}$ then $s_{i} s_{j}=s_{j} s_{i}$,
(bb) If $i \in\{1, \ldots, m-2\}$ then $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$.
(bc) If $i \in\{1, \ldots, m-1\}$ then $s_{i}^{2}=1, \quad 1 \leqslant i \leqslant m-1$.
PICTU REsisjsjsi
(bb)
PICTU REsisip1
(bc)

> PICTU REsi2

S.10. Proofs for the alternating group

Proposition S.10.1. - Suppose that $\sigma \in A_{m}$. Let \mathcal{C}_{σ} denote the conjugacy class of σ in S_{m} and let \mathcal{A}_{σ} denote the conjugacy class of σ in A_{m}.
(a) Then σ has an even number of cycles of even length.
(b)

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\frac{\operatorname{Card}\left(\mathcal{C}_{\sigma}\right)}{2}, & \text { if all cycles } \sigma \text { are of different odd lengths }, \\ \operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { otherwise }\end{cases}
$$

Proof. -
(a) Suppose that σ has cycle type $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$.

To show: An even number of the $\lambda_{j}, 1 \leqslant j \leqslant k$, are even.
Let γ_{λ} be the permutation given, in cycle notation, by

$$
\gamma_{\lambda}=\left(1,2, \cdots, \lambda_{1}\right)\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+1, \cdots\right) \cdots .
$$

Since A_{m} is a normal subgroup of S_{m} and $\sigma \in A_{m}$ it follows that $C_{\sigma}=\mathcal{C}_{\gamma_{\lambda}} \subseteq A_{m}$. So $\gamma_{\lambda} \in A_{m}$.
So the length $\ell\left(\gamma_{\lambda}\right)$ of γ_{λ} is even.
So $\ell\left(\gamma_{\lambda}\right)=\sum_{i=1}^{k}\left(\lambda_{i}-1\right)$ is even.
So there are an even number of $1 \leqslant j \leqslant k$ such that $\lambda_{j}-1$ is odd.
So there are an even number of $1 \leqslant j \leqslant k$ such that λ_{j} is even.
So σ has an even number of cycles of even length.
(b) Let S_{σ} be the stabilizer of σ under the action of S_{m} on itself by conjugation.

Let A_{σ} be the stabilizer of σ under the action of A_{m} on itself by conjugation.

Then, by Proposition (???),

$$
\frac{1}{2} \operatorname{Card}\left(S_{\sigma}\right) \operatorname{Card}\left(\mathcal{C}_{\sigma}\right)=\frac{\operatorname{Card}\left(S_{m}\right)}{2}=\operatorname{Card}\left(A_{m}\right)=\operatorname{Card}\left(A_{\sigma}\right) \operatorname{Card}\left(\mathcal{A}_{\sigma}\right)
$$

So,

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { if } \operatorname{Card}\left(A_{\sigma}\right) \neq \operatorname{Card}\left(S_{\sigma}\right), \\ \frac{\operatorname{Card}\left(\mathcal{C}_{\sigma}\right)}{2}, & \text { if } \operatorname{Card}\left(A_{\sigma}\right)=\operatorname{Card}\left(S_{\sigma}\right)\end{cases}
$$

Since $A_{\sigma} \subseteq S_{\sigma}$,

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { if } S_{\sigma} \subseteq A_{\sigma} \\ \operatorname{Card}\left(\frac{\left.\mathcal{C}_{\sigma}\right)}{2},\right. & \text { if } S_{\sigma} \nsubseteq A_{\sigma}\end{cases}
$$

So,

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { if } S_{\sigma} \subseteq A_{m} \\ \frac{\operatorname{Card}\left(\mathcal{C}_{\sigma}\right)}{2}, & \text { if } S_{\sigma} \nsubseteq A_{m}\end{cases}
$$

Then, by Lemma (???),

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { if } S_{\gamma_{\lambda}} \subseteq A_{m} \\ \frac{\operatorname{Card}\left(\mathcal{C}_{\sigma}\right)}{2}, & \text { if } S_{\gamma_{\lambda}} \nsubseteq A_{m}\end{cases}
$$

By Lemma (???),

$$
\operatorname{Card}\left(\mathcal{A}_{\sigma}\right)= \begin{cases}\frac{\operatorname{Card}\left(\mathcal{C}_{\sigma}\right)}{2}, & \text { if all cycles } \sigma \text { are of different odd lengths }, \\ \operatorname{Card}\left(\mathcal{C}_{\sigma}\right), & \text { otherwise }\end{cases}
$$

Lemma S.10.2. - Let $\sigma \in A_{m}$ and let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ be the cycle type of σ. Let γ_{λ} be the permutation given, in cycle notation, by

$$
\gamma_{\lambda}=\left(1,2, \cdots, \lambda_{1}\right)\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+1, \cdots\right) \cdots
$$

Let S_{σ} denote the stabilizer of σ under the action of S_{m} on itself by conjugation. Then,
(a) $S_{\sigma} \subseteq A_{m}$ if and only if $S_{\gamma_{\lambda}} \subseteq A_{m}$.
(b) $S_{\gamma_{\lambda}} \subseteq A_{m}$ if and only if γ_{λ} has all odd cycles of different lengths.

Proof. -

(a) To show: $S_{\sigma} \subseteq A_{m}$ if and only if $S_{\gamma_{\lambda}} \subseteq A_{m}$.

To show: (aa) If $S_{\sigma} \subseteq A_{m}$ then $S_{\gamma_{\lambda}} \subseteq A_{m}$.
(ab) If $S_{\gamma_{\lambda}} \subseteq A_{m}$ then $S_{\sigma} \subseteq A_{m}$.
Then, by Proposition (????), there exists $\pi \in S_{m}$ such that $\pi \sigma \pi^{-1}=\gamma_{\lambda}$.
Thus, $S_{\gamma_{\lambda}}=\pi S_{\sigma} \pi^{-1}$.

$$
\text { (aa) Assume } S_{\sigma} \subseteq A_{m} \text {. }
$$

Let $\tau \in S_{\gamma_{\lambda}}$.
Then $\pi^{-1} \tau \pi \in S_{\sigma}$.
So $\pi^{-1} \tau \pi \in A_{m}$.
So $1=\varepsilon\left(\pi^{-1} \tau \pi\right)$.
Since ε is a homomorphism, $\varepsilon(\tau)=\varepsilon(\pi)^{-1} \varepsilon(\tau) \varepsilon(\pi)=\varepsilon\left(\pi^{-1} \tau \pi\right)=1$.

So $\tau \in A_{m}$.
So $S_{\gamma_{\lambda}} \subseteq A_{m}$.
(ab) Assume $S_{\gamma_{\lambda}} \subseteq A_{m}$.
Let $\tau \in S_{\sigma}$.
Then $\pi \tau \pi^{-1} \in S_{\gamma_{\lambda}}$.
So $\pi \tau \pi^{-1} \in A_{m}$.
So $1=\varepsilon\left(\pi \tau \pi^{-1}\right)$.
Since ε is a homomorphism, $\varepsilon(\tau)=\varepsilon(\pi) \varepsilon(\tau) \varepsilon(\pi)^{-1}=\varepsilon\left(\pi \tau \pi^{-1}\right)=1$.
So $\tau \in A_{m}$.
So $S_{\sigma} \subseteq A_{m}$.
So $S_{\sigma} \subseteq A_{m}$ if and only if $S_{\gamma_{\lambda}} \subseteq A_{m}$.
(b) To show: $S_{\gamma_{\lambda}} \subseteq A_{m}$ if and only if γ_{λ} has all odd cycles of different lengths.

To show: (ba) If $S_{\gamma_{\lambda}} \subseteq A_{m}$ then γ_{λ} has all odd cycles of different lengths. item[]
(bb) If γ_{λ} has all odd cycles of different lengths then $S_{\gamma_{\lambda}} \subseteq A_{m}$.
(ba) Proof by contradiction.
Assume λ does not have all odd parts of different lengths.
To show: $S_{\gamma_{\lambda}} \nsubseteq A_{m}$.
Case 1: Assume γ_{λ} has an even cycle, say $(k+1, \ldots, k+2 n)$.
Let π be the permutation which cyclically permutes this cycle, $\pi=(k+$ $1, \ldots, k+2 n$).
Then $\pi \in S_{\gamma_{\lambda}}$.
But $\varepsilon(\pi)=(-1)^{2 n-1}=-1$.
So $\pi \notin A_{m}$.
So $S_{\gamma_{\lambda}} \nsubseteq A_{m}$.
Case 2: Assume γ_{λ} has two cycles of the same odd length, say $(k+1, \ldots, k+n)$ and $(k+n+1, \ldots, k+n+n)$.
Let π be the permutation which switches these two cycles, $\pi=(k+1, k+1+$ $n)(k+2, k+2+n) \cdots(k+n, k+n+n)$.
Then $\pi \in S_{\gamma_{\lambda}}$.
But $\varepsilon(\pi)=(-1)^{n^{2}}=-1$, since n is odd.
So $\pi \notin A_{m}$.
So $S_{\gamma_{\lambda}} \nsubseteq A_{m}$.
(bb) Assume γ_{λ} has all different odd cycles.
Suppose that $\tau \in S_{\gamma_{\lambda}}$.
This means that τ must be a permutation that
(1) permutes cycles of γ_{λ} of the same length and/or
(2) cyclically rearranges the elements of the cycles of γ_{λ}.

Since all cycles of γ_{λ} are different lengths, τ cyclically permutes the elements of the cycles of γ_{λ}.
Define permutations

$$
c_{1}=\left(1,2, \ldots, \lambda_{1}\right), \quad c_{2}=\left(\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right), \quad \text { etc. }
$$

Then $\tau=c_{1}^{n_{1}} c_{2}^{n_{2}} \cdots c_{k}^{n_{k}}$ for some positive integers $n_{1}, n_{2}, \ldots, n_{k}$.
Then $\varepsilon\left(c_{j}\right)=(-1)^{\lambda_{j}-1}=1$, since λ_{j} is odd.
So $\varepsilon($ tau $)=\varepsilon\left(c_{1}\right)^{n_{1}} \varepsilon\left(c_{2}\right)^{n_{2}} \cdots \varepsilon\left(c_{k}\right)^{n_{k}}=1$.
So $\tau \in A_{m}$.
So $S_{\gamma_{\lambda}} \subseteq A_{m}$.

Theorem S.10.3. -
(a) If $m \neq 4$ then A_{m} is simple.
(b) The alternating group A_{4} has a single nontrivial proper normal subgroup given by

$$
\{(1234),(2143),(3412),(4321)\}
$$

Proof. -
(a) Case a: $n=1,2,3$.

The groups $A_{1}=\{1\}, A_{2}=\{1\} A_{3}=\{(123),(213),(312)\}$ have no nontrivial proper subgroups.
So A_{1}, A_{2} and A_{3} have no nontrivial proper normal subgroups.
(b) Case b: $n=4$.

The conjugacy classes of A_{4} are
$\{1\}, \quad\{(123),(134),(243),(142)\}, \quad\{(132)(124),(234),(143)\}, \quad\{(12)(34),(13)(24),(14)(23)\}$.
Let N be a normal subgroup of A_{4}.
(ba) Case ba: $\pi=(123) \in N$.
Then $\pi^{-1}=(132)$ and $(123)(124)=(12)(34)$ are in N.
So N contains all the conjugacy classes.
So $N=A_{n}$.
(bb) Case bb: $\pi=(132) \in N$.
Then $\pi^{-1}=(123)$ and $(123)(124)=(12)(34)$ are in N.
So N contains all the conjugacy classes.
So $N=A_{n}$.
Thus, the only possible union of conjugacy classes which could be a normal subgroup is

$$
N=\{1,(12)(34),(13)(24),(14)(23)\}
$$

It is easy to check that this is a subgroup of A_{4}.
(c) Case c: $n \geqslant 5$.

Let N be a normal subgroup of A_{n} such that $N \neq(1)$.
To show: $N=A_{n}$.
Let $\sigma \in N$ and suppose that sigma has cycle type λ.
Let γ_{λ}

SOMEHTING

(ca) Case ca: σ has a cycle $\left(i_{1} i_{2} \cdots i_{r}\right)$ of length $r>3$.
Then $\sigma^{-1} \in N$ and $\left(i_{2} i_{3} i_{4}\right) \sigma\left(i_{4} i_{3} i_{2}\right) \in N$.
So $\sigma^{-1}\left(\left(i_{2} i_{3} i_{4}\right) \sigma\left(i_{4} i_{3} i_{2}\right)\right)=\left(\sigma^{-1}\left(i_{1} i_{2} i_{3}\right) \sigma\right)\left(i_{4} i_{3} i_{2}\right)=\left(i_{1} i_{2} i_{3}\right)\left(i_{4} i_{3} i_{2}\right)=\left(i_{1} i_{2} i_{4}\right) \in$ N.
Thus, by Lemma (???), $N=A_{n}$.
(cb) Case cb: σ does not have all odd cycles of different lengths and σ has a cycle of length >2.
Then, by Propositions (???) and (???), $\mathcal{A}_{\sigma}=\mathcal{C}_{\sigma}=\mathcal{C}_{\gamma_{\lambda}}$.
Since N is normal, $\mathcal{C}_{\gamma_{\lambda}}=\mathcal{A}_{\sigma} \subseteq N$.
So $\gamma_{\lambda} \in N$ and $s_{1} \gamma_{\lambda} s_{1} \in N$.
Since N is a subgroup $\gamma_{\lambda}^{-1} \in N$.
So $\gamma_{\lambda}^{-1}\left(s_{1} \gamma_{\lambda} s_{1}\right)=\left(\gamma_{\lambda}^{-1} s_{1} \gamma_{\lambda}\right) s_{1}=s_{2} s_{1}=(123) \in N$.
Thus, by Lemma (), $N=A_{n}$.
(cc) Case cc: σ has all cycles of length 2 or 1.

Since $\sigma \in A_{n}, \sigma$ has at least two cycles of length 2 .

```
Thus, by Proposition (), \(\mathcal{A}_{\sigma}=\mathcal{C}_{\sigma}=\mathcal{C}_{\gamma_{\lambda}}\).
Since \(N\) is normal, \(\mathcal{C}_{\gamma_{\lambda}}=\mathcal{A}_{\sigma} \subseteq N\).
So \(\gamma_{\lambda} \in N\) and \(s_{2} \gamma_{\lambda} s_{2} \in N\).
Since \(N\) is a subgroup \(\gamma_{\lambda}^{-1} \in N\).
So \(\gamma_{\lambda}^{-1} s_{2} \gamma_{\lambda} s_{2}=(14)(23) \in N\).
So \(\pi_{1}=(12)(34)(5)\) and \(\pi_{2}=(12)(3)(45) \in N\).
So \(\pi_{1} \pi_{2}=(345) \in N\).
Thus, by Lemma (), \(N=A_{n}\).
```

Lemma S.10.4. - Suppose N is a normal subgroup of $A_{n}, n>4$, and N contains a 3-cycle. Then $N=A_{n}$.

Proof. - To show: $A_{n} \subseteq N$.
Let $\pi=\left(i_{1}, i_{2}, i_{3}\right)$ be a 3 -cycle in N.
Since $n>4, \pi$ has more than one 1-cycle and it follows from Proposition (), that $\mathcal{A}_{\pi}=\mathcal{C}_{\pi}$.
Thus, since N is normal, $\mathcal{C}_{\pi} \subseteq N$.
So (123) and (143) are elements of N.
Then $\sigma=(143)(123)=(12)(34)=s_{1} s_{3} \in N$.
Since σ has an even cycle, it follows from Proposition (), that $\mathcal{A}_{\sigma}=\mathcal{C}_{\sigma} \subseteq N$.
Then

$$
s_{i} s_{j} \in \begin{cases}\mathcal{C}_{\pi}, & \text { if } j=i+1 \\ \mathcal{C}_{\sigma}, & \text { otherwise }\end{cases}
$$

So $s_{i} s_{j} \in N$ for all i, j.
By, Proposition () and Proposition (), the elements $s_{i} s_{j}$ generate A_{n}.
So $A_{n} \subseteq N$.

[^0]: Notes of Arun Ram aram@unimelb.edu.au, Version: 4 April 2020

[^1]: Notes of Arun Ram aram@unimelb.edu.au, Version: 4 April 2020

