
CHAPTER G

STRUCTURE AND ACTION: GROUPS AND
GROUP ACTIONS

The standard abstract algebra course presents the basic properties of groups, rings, and
fields. The motivation is to study the properties of the number systems that we use,
some of these being:

(a) the positive integers, Z>0 = {1, 2, 3, . . .},
(b) the integers, Z = {. . . ,�2,�1, 0, 1, 2, . . .},
(c) the rational numbers, Q =

�
p

q
| p 2 Z, q 2 Z>0

 
,

(d) the real numbers, R,

with the operations of addition and multiplication. We need to find exactly what prop-
erties these structures have and what the implications of these properties are.

G.1. Groups

We start with some basics, just a set and one operation. We can think of the operation
as addition or multiplication, or something else, like composition of functions.

Definition G.1.1. — A group is a set G with a function

G⇥G �! G
(g1, g2) 7! g1g2

such that

(a) If g1, g2, g3 2 G then (g1g2)g3 = g1(g2g3),

(b) There exists an identity 1 in G such that if g 2 G then 1g = g1 = g,

(c) If g 2 G then there exists an inverse to g, g�1 2 G, such that gg�1 = g�1g = 1.

HW: Show that the identity 1 2 G is unique.

HW: Show that if g 2 G the the inverse g�1 2 G is unique.

HW: Why isn’t {1, 2, 3, 4, 5} a group?

Important examples of groups are:

(a) The integers Z with the operation of addition,
(b) The integers mod n Z/nZ with operation addition,
(c) The symmetric group Sn,
(d) The general linear group of invertible matrices, Gln(C).

Group homomorphisms are used to compare groups. A group homomorphism must
preserve the structures that distinguish a group: the operation, the identity, and the
inverses.

Definition G.1.2. — Let G and H be groups with identities 1G and 1H respectively.
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• A group homomorphism is a function f : G ! H such that
(a) If g1, g2 2 G then f(g1g2) = f(g1)f(g2),
(b) f(1G) = 1H .
(c) If g 2 G then f(g�1) = f(g)�1.

• A group isomorphism is a group homomorphism f : G ! H such that the inverse
function f�1 : H ! G exists and f�1 is a group homomorphism.

• Two groups G and H are isomorphic, G ' H, if there exists a group isomorphism
f : G ! H between them.

Two groups are isomorphic if both the elements of the groups and their operations match
up exactly. Think of two groups that are isomorphic as being “the same”. When we are
classifying groups we put two groups in the same class only if they are isomorphic. This
is what is meant by classifying groups “up to isomorphism”.

HW: Show that f : G ! H is a group isomorphism if and only if f : G ! H is a bijective
group homomorphism.

The following proposition says that (b) and (c) in the definition of a group homomorphism
come “for free” once one assumes that f : G ! H satisfies (a).

Proposition G.1.1. — Let G and H be groups with identities 1G and 1H , respectively.
Let f : G ! H be a function such that

(a) If g1, g2 2 G then f(g1g2) = f(g1)f(g2).

Then

(b) f(1G) = 1H and
(c) If g 2 G then f(g) = f(g)�1.

Definition G.1.3. — Let G be a group.

• A subgroup of a group G is a subset H ✓ G such that
(a) If h1, h2 2 H then h1h2 2 H,
(b) 1 2 H,
(c) If h 2 H then h�1 2 H.

• The trivial group, {1} is the set containing only 1 with the operation given by
1 · 1 = 1.

G.1.1. Cosets. — Let G be a group and let H be a subgroup of G. We will use the
subgroup H to divide up the group G.

Definition G.1.4. — Let G be a group and let H be a subgroup of G.

• A left coset of H in G is a set

gH = {gh | h 2 H} where g 2 G.

• G/H (pronounced “G mod H”) is the set of left cosets of H in G.

• A right coset in G is a set

Hg = {hg | h 2 H} where g 2 G.

• H\G is the set of right cosets of H in G.
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Unless we specify otherwise we shall always work with left cosets and just call them
cosets.

HW: Let G be a group and let H be a subgroup of G. Let x and g be two elements of
G. Show that x 2 gH if and only if gH = xH.

Proposition G.1.2. — Let G be a group and let H be a subgroup of G. Then the cosets
of H in G partition G.

Proposition G.1.3. — Let G be a group and let H be a subgroup of G. If g1, g2 2 G
then

Card(g1H) = Card(g2H).

Corollary G.1.4. — Let H be a subgroup of a group G. Then

Card(G) = Card(G/H)Card(H).

The above results show that the cosets of a subgroup H divide the group G into equal
size pieces, one of these pieces being the subgroup H itself.

Notice the analogy between Proposition F.2.2 and Proposition R.1.2 and Proposition
R.2.2 and Proposition G.1.2.

Definition G.1.5. — Let G be a group and let H be a subgroup of G.

• A set of coset representatives of H in G is a set of distinct elements {gi} of G
such that
(a) each coset of H is of the form giH for some gi and
(b) giH 6= gjH unless gi = gj.

• The index of H in a group G is Card(G/H).

HW: Show that Card(G/{1}) = Card(G).
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G.1.2. Quotient Groups $ Normal Subgroups. — Let H be a subgroup of a
group G. We can try to make the set G/H of cosets of H into a group by defining a
multiplication operation on the cosets. The only problem is that this doesn’t work for the
cosets of just any subgroup, the subgroup has to have special properties.

Definition G.1.6. — Let G be a group.

• A normal subgroup N is a subgroup of G such that if n 2 N and g 2 G then
gng�1 2 N .

HW: Show that a subgroup N of a group G is normal if and only if N satisfies: if g 2 G
then gN = Ng.

Theorem G.1.5. — Let N be a subgroup of a group G. Then N is a normal subgroup
of G if and only if G/N with the operation given by (aN)(bN) = abN is a group.

Notice the analogy between Theorem F.2.3, Theorem R.2.3, Theorem R.1.3 and Theorem
G.1.5.

Definition G.1.7. — Let G be a group and let N be a normal subgroup of G.

• The quotient group G/N is the set of cosets N with the operation given by
(aN)(bN) = (abN).

Wow!! We actually made this weird set of cosets into a group!!

Theorem G.1.6. — Let N be a subgroup of a group G. Then N is a normal subgroup
of G if and only if the operation on G/N given by (aN)(bN) = abN is well defined.

HW: Show that if G = N then N is a normal subgroup of G and G/N ⇠= {1}.

G.1.3. Kernel and image of a group homomorphism. —

Definition G.1.8. — Let f : G ! H be a group homomorpihsm.

• The kernel of f is the set

ker f = {g 2 G | f(g) = 1H},
where 1H is the identity in H.

• The image of f is the set

imf = {f(g) | g 2 G}.

Proposition G.1.7. — Let f : G ! H be a group homomorphism. Then

(a) ker f is a normal subgroup of G.

(b) imf is a subgroup of H.

Proposition G.1.8. — Let f : G ! H be a group homomorphism. Let 1G be the
identity in G. Then

(a) ker f = {1G} if and only if f is injective.

(b) imf = H if and only if f is surjective.

HW: Show that if S and T are any two sets and f : S ! T is a map then im f = T if
and only if f is surjective.
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Theorem G.1.9. — (a) Let f : G ! H be a group homomorphism and let K = ker f .
Define

f̂ : G/ ker f �! H
gK 7�! f(g).

Then f̂ is a well defined injective group homomorphism.
(b) Let f : G ! H be a group homomorphism and define

f 0 : G �! imf
g 7�! f(g).

Then f 0 is a well defined surjective group homomorphism.
(c) If f : G ! H is a group homomorphism then

G/ ker f ' imf,

where the isomorphism is a group isomorphism.

G.1.4. Direct Products. — Suppose H and K are groups. The idea is to make H⇥K
into a group.

Definition G.1.9. — Let H and K be groups.

• The direct product H ⇥ K of two groups H and K is the set H ⇥ K with the
operation given by

(h1, k1)(h2, k2) = (h1h2, k1k2)

for h1, h2 2 H and k1, k2 2 K.
• More generally, given groups G1, . . . , Gn, the direct product G1 ⇥ · · ·⇥Gn is the
set G1 ⇥ · · ·⇥Gn with operation given by

(h1, . . . , hi, . . . , hn)(k1, . . . , ki, . . . , kn) = (h1k1, . . . , hiki, . . . , hnkn)

where hi, ki 2 Gi and hiki is given by the operation in the group Gi.

The operation in the direct product is just the operations of the original groups acting
componentwise.

HW: Show that these are good definitions i.e., that, as defined above, H ⇥K and G1 ⇥
· · ·⇥Gn are groups with identities given by (1H , 1K) and (1G1 , . . . , 1Gn

) respectively (1Gi

denotes the identity in the group Gi).

G.1.5. Further Definitions. —

Definition G.1.10. —

• An abelian group is a group G such that if g1, g2 2 G then g1g2 = g2g1.

• The center Z(G) of a group G is the set

Z(G) = {c 2 G | if g 2 G then cg = gc}.

HW: Give an example of a non-abelian group.

HW: Prove that every subgroup of an abelian group is normal.

HW: Prove that Z(G) is a normal subgroup of G.

HW: Prove that Z(G) = G if and only if G is abelian.

Definition G.1.11. — Let G be a group and g 2 G.
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• The order of G is Card(G), the number of elements in G.

• The order o(g) of g is the smallest positive integer n such that gn = 1. If no such
integer exists then o(g) = 1.

Definition G.1.12. — Let G be a group and S a subset of G.

• The subgroup generated by S is the subgroup hSi of G such that
(a) S ✓ hSi,
(b) If H is a subgroup of G and S ✓ H then hSi ✓ H.

The subgroup hSi is the smallest subgroup of G containing S. Think of hSi as gotten by
adding to S exactly those elements of G that are needed to make a group.

HW: Let G be a group and let S be a subset of G. Show that the subgroup generated
by S exists and is unique.


