F.4. Proofs: Fields

Proposition F.1.1. — If $f: \mathbb{K} \to \mathbb{F}$ is a field homomorphism then f is injective.

Proof. — Proof by contrapositive.

Assume $\mathbb K$ and $\mathbb F$ are fields with additive identities $0_{\mathbb K}$ and $0_{\mathbb F}$

and multiplicative identities $1_{\mathbb{K}}$ and $1_{\mathbb{F}}$, respectively.

Assume $f \colon \mathbb{K} \to \mathbb{F}$ is a function such that

(a) If $x_1, x_2 \in \mathbb{K}$ then $f(x_1 + x_2) = f(x_1) + f(x_2)$ and

(b) If $x_1, x_2 \in \mathbb{K}$ then $f(x_1x_2) = f(x_1)f(x_2)$.

To show: If f is not injective then f is not a field homomorphism.

Assume f is not injective.

Then there exist $x_1, x_2 \in \mathbb{K}$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. So $x_1 - x_2 \neq 0$.

Since \mathbb{K} is a field, there exists $y \in \mathbb{K}$ such that $y(x_1 - x_2) = 1_{\mathbb{K}}$. Then

$$f(1_{\mathbb{K}}) = f(1_{\mathbb{K}} 1_{\mathbb{K}}) = f(1_{\mathbb{K}} y(x_1 - x_2))$$

= $f(1_{\mathbb{K}}) f(y) (f(x_1) - f(x_2)) = f(1_{\mathbb{K}}) f(y) \cdot 0_{\mathbb{F}} = 0_{\mathbb{F}}$

So f is not a field homomorphism.