G.6. Proofs: Group actions

Proposition G.6.1. — *Suppose G is a group acting on a set S and* let $s \in S$ *and* $g \in G$ *. Then* (a) G_s *is a subgroup of* G *.* (b) $G_{gs} = gG_s g^{-1}$. *Proof*. — (a) To show: (aa) If $h_1, h_2 \in G_s$ then $h_1 h_2 \in G_s$. (ab) $1 \in G_s$. (ac) If $h \in G_s$ then $h^{-1} \in G_s$. (aa) Assume $h_1, h_2 \in G_s$. Then $(h_1h_2)s = h_1(h_2s) = h_1s = s.$ So $h_1 h_2 \in G_s$. (ab) Since $1s = s, 1 \in G_s$. (ac) Assume $h \in G_s$. Then $h^{-1}s = h^{-1}(hs) = (h^{-1}h)s = 1s = s.$ So $h^{-1} \in G_s$. So *G^s* is a subgroup of *G*. (b) To show: (ba) $G_{qs} \subseteq gG_{s}g^{-1}$. (bb) $qG_s q^{-1} \subset G_{as}$. (ba) Assume $h \in G_{as}$. Then *hgs* = *gs*. So $g^{-1}hgs = s$. So $g^{-1}hg \in G_s$. Since $h = g(g^{-1}hg)g^{-1}$ then $h \in gG_s g^{-1}$. So $G_{gs} \subseteq gG_s g^{-1}$. (bb) Assume $h \in gG_s g^{-1}$. So there exists $a \in G_s$ such that $h = gag^{-1}$. Then $hgs = (gag^{-1})gs = gas = gs.$ So $h \in G_{as}$. So $G_{as} \subseteq gG_s g^{-1}$. So $G_{as} = gG_s g^{-1}$. \Box

Proposition G.6.2. — *Let G be a group which acts on a set S. Then the orbits partition the set S.*

Proof. — To show: (a) If $s \in S$ then there exists $t \in S$ such that $s \in Gt$. (b) If $s_1, s_2 \in S$ and $Gs_1 \cap GS_2 \neq \emptyset$ then $Gs_1 = Gs_2$. (a) Assume $s \in S$. Then, since $s = 1s, s \in Gs$. (b) Assume $s_1, s_2 \in S$ and that $Gs_1 \cap GS_2 \neq \emptyset$.

Notes of Arun Ram aram@unimelb.edu.au, Version: 30 March 2020

Let $t \in Gs_1 \cap Gs_2$. Then there exist $g_1, g_2 \in G$ such that $t = g_1 s_1$ and $t = g_2 s_2$. So $s_1 = g_1^{-1}g_2s_2$ and $s_2 = g_2^{-1}g_1s_1$. To show: $Gs_1 = Gs_2$.

To show: (ba) $Gs_1 \subseteq Gs_2$. (bb) $Gs_2 \subseteq Gs_1$. (ba) Let $t_1 \in Gs_1$. So there exists $h_1 \in G$ such that $t = h_1 s_1$. Then $t_1 = h_1 s_1 = h_1 g_1^{-1} g_2 s_2 \in G s_2.$

So $Gs_1 \subseteq Gs_2$. (bb) Let $t_2 \in Gs_s$.

So there exists $h_2 \in G$ such that $t_2 = h_2 s_2$. Then $t_2 = h_2 s_2 = h_2 g_2^{-1} g_1 s_1 \in G s_1.$

So $Gs_2 \subseteq Gs_1$. So $Gs_1 = Gs_2$.

So the orbits partition *S*.

Corollary G.6.3. — If G is a group acting on a set S and Gs_i denote the orbits of the *action of G on S then*

$$
Card(S) = \sum_{\text{distinct orbits}} Card(Gs_i).
$$

Proof. — By Proposition 1.2.4, *S* is a disjoint union of orbits. So $Card(S)$ is the sum of the cardinalities of the orbits.

Proposition G.6.4. — Let G be a group acting on a set S and let $s \in S$. If Gs is the *orbit containing s and G^s is the stabilizer of s then*

$$
Card(G/G_s)=Card(Gs).
$$

where G/G_s *is the set of cosets of* G_s *in* G *.*

Proof. — To show: There is a bijective map φ : $G/G_s \to Gs$. Define

$$
\varphi: \quad G/G_s \rightarrow GsgG_s \rightarrow gs.
$$

To show: (a) φ is well defined. (b) φ is bijective.

(a) To show: (aa) If $q \in G$ then $\varphi(qG_s) \in G_s$. (ab) If $q_1 G_s = q_2 G_s$ then $\varphi(q_1 G_s) = \varphi(q_2 G_s)$. (aa) From the definition of φ , $\varphi(gG_s) = gs \in Gs$. (ab) Assume $g_1, g_2 \in G$ and $g_1 G_s = g_2 G_s$. Then $g_1 = g_2 h$ for some $h \in G_s$. To show: $g_1 s = g_2 s$. Since $h \in G_s$ then $g_1s = g_2hs = g_2s$.

So $\varphi(g_1 G_s) = \varphi(g_2 G_s)$. So φ is well defined.

 \Box

 \Box

(b) To show: (ba) φ is injective. (bb) φ is surjective. (ba) To show: φ is injective. If $\varphi(g_1 G_s) = \varphi(g_2 G_2)$ then $g_1 G_s = g_2 G_s$. Assume $\varphi(q_1 G_s) = \varphi(q_2 G_s)$. Then $g_1 s = g_2 s$. So $s = g_1^{-1}g_2s$ and $g_2^{-1}g_1s = s$. So $g_1^{-1}g_2 \in G_s$ and $g_2^{-1}g_1 \in G_s$. To show: $g_1G_s = g_2G_s$ To show: (baa) $g_1 G_s \subseteq g_2 G_s$. (bab) $g_2G_s \subseteq g_1G_s$. (baa) Let $k_1 \in g_1 G_s$. So there exists $h_1 \in G_s$ such that $k_1 = q_1 h_1$. Then $k_1 = g_1h_1 = g_1g_1^{-1}g_2g_2^{-1}g_1h_1 = g_2(g_2^{-1}g_1h_1) \in g_2G_s$. So $g_1G_s \subseteq g_2G_s$. (bab) Let $k_2 \in g_2G_s$. So there exists $h_2 \in G_s$ such that $k_2 = g_2 h_2$. Then $k_2 = g_2h_2 = g_2g_2^{-1}g_1g_1^{-1}g_2h_2 = g_1(g_1^{-1}g_2h_2) \in g_1G_s.$ So $g_2G_s \subseteq g_1G_s$. So $q_1 G_s = q_2 G_s$. So φ is injective. (bb) To show: φ is surjective. To show: If $t \in G$ *s* then there exists $hG_s \in G/G_s$ such that $\varphi(hG_s) = t$. Assume $t \in G_s$. Then there exists $q \in G$ such that $t = qs$. Let $h = g$ so that $hG_s = gG_s$. Then $\varphi(gG_s) = gs = t$. So φ is surjective. So φ is bijective.

Corollary $G.6.5$. — Let G be a group acting on a set S. Let $s \in S$, let G_s denote the *stabilizer of s and let Gs denote the orbit of s. Then*

 \Box

$$
Card(G) = Card(Gs)Card(G_s).
$$

Proof. — Multiply both sides of the identity in Proposition 1.2.6 by Card (G_s) and use Corollary 1.1.5. \Box

Proposition G.6.6. — Let *H* be a subgroup of *G* and let N_H be the normalizer of *H* in *G. Then*

(a) *H is a normal subgroup of* N_H .

(b) If *K* is a subgroup of *G* such that $H \subseteq K \subseteq G$ and *H* is a normal subgroup of *K* then $K \subset N_H$ *.*

Proof. —

(b) Assume *K* is a subgroup of *G*, $H \subseteq K \subseteq G$ and *H* is a normal subgroup of *K*. To show: $K \subseteq N_H$.

Let $k \in K$. To show: $k \in N_H$. To show: If $h \in H$ then $khk^{-1} \in H$. This is true since *H* is normal in *K*. So $K \subseteq N_H$.

(a) This is the special case of (b) when $K = H$.

Proposition G.6.7. — *Let G be a group and let S be the set of subsets of G. Then* (a) *G acts on S by*

$$
\begin{array}{rcl}\n\alpha: & G \times \mathcal{S} \rightarrow & \mathcal{S} \\
(g, S) & \mapsto & gSg^{-1} \qquad \text{where } gSg^{-1} = \{ gsg^{-1} \mid s \in S \}.\n\end{array}
$$

We say that G acts on S by conjugation.

(b) *If S is a subset of G then N^S is the stabilizer of S under the action of G on S by conjugation.*

Proof. —

- (a) To show: (aa) α is well defined. (ab) $\alpha(1, S) = S$ for all $S \in \mathcal{S}$. (ac) If $g, h \in G$ and $S \in \mathcal{S}$ then $\alpha(g, \alpha(h, S)) = \alpha(gh, S)$. (aa) To show: (aaa) $qSq^{-1} \in S$. (aab) If $S = T$ and $q = h$ then $qSq^{-1} = hTh^{-1}$. Both of these are consequences of the definitions.
	- (ab) Let $S \in \mathcal{S}$. Then $\alpha(1, S) = 1S1^{-1} = S$.
	- (ac) Let $g, h \in G$ and $S \in \mathcal{S}$. Then

$$
\alpha(g, \alpha(h, S)) = \alpha(g, hSh^{-1}) = g(hSh^{-1})g^{-1} = (gh)S(h^{-1}g^{-1}) = (gh)S(gh)^{-1} = \alpha(gh, S).
$$

(b) This follows from the definitions of N_S and of stabilizer.

Proposition G.6.8. — *Let G be a group. Then* (a) *G acts on G by*

$$
\begin{array}{rcl} G \times G & \to & G \\ (g, s) & \mapsto & gsg^{-1}. \end{array}
$$

We say that G acts on itself by conjugation.

- (b) Two elements $q_1, q_2 \in G$ are conjugate if and only if they are in the same orbit under *the action of G on itself by conjugation.*
- (c) Let $g \in G$. The conjugacy class C_q is the orbit of g under the action of G on itself by *conjugation.*
- (d) Let $g \in G$. The centralizer Z_g is the stabilizer of g under the action of G on itself by *conjugation.*

Proof. —

(a) The proof is exactly the same as the proof of (a) in Proposition 1.2.10.

Replace all the capital *S*'s by lower case *s*'s.

(b), (c), and (d) follow from the definitons. NOT SURE IF I LIKE THIS.

Lemma G.6.9. — Let G_s be the stabilizer of $s \in G$ under the action of G on itself by *conjugation. Let Z*(*G*) *be the center of G. Let S be a subset of G. Then*

 \Box

 \Box

(a) $Z_S = \bigcap G_s$. *s*2*S* (b) $Z(G) = Z_G$. (c) $s \in Z(G)$ *if and only if* $Z_s = G$ *.* (d) $s \in Z(G)$ *if and only if* $C_s = \{s\}.$ *Proof*. — (a) (aa) Assume $s \in Z_s$. Then, if $\in S$ then $sxs^{-1} = s$. So, if $s \in S$ then $x \in G_s$. So $x \in \bigcap_{s \in S} G_s$. $\sum_{s \in S} G_s$. (ab) Assume $x \in \bigcap_{s \in S} G_s$. Thus, if $s \in S$ then $xsx^{-1} = s$. So $x \in Z_s$. So $\bigcap_{s \in S} G_s \subseteq Z_s$. (b) This follows from the definitions of Z_G and $Z(G)$. $(c) \implies$: Let $s \in Z(G)$. To show: $Z_s = G$. By definition, $Z_s \subseteq G$. To show: $G \subseteq Z_s$. Let $q \in G$. Then $gsg^{-1} = s$, since $s \in Z(G)$. So $g \in Z_s$. So $G \subseteq Z_s$. So $Z_s = G$. $(c) \Longleftarrow$: Assume $Z_s = G$. So, if $g \in G$ then $gsg^{-1} = s$. Thus, if $g \in G$ then $gs = sg$. So $s \in Z(G)$. $(d) \implies$: Assume $s \in Z(G)$. Then, if $s \in G$ then $gsg^{-1} = s$. So $\mathcal{C}_s = \{ gsg^{-1} | g \in G \} = \{ s \}.$ $(d) \Longleftarrow$: Assume $\mathcal{C}_s = \{s\}.$ So, if $g \in G$ then $gsg^{-1} = s$. So $s \in Z(G)$.

 \Box

Proposition G.6.10. — (The Class Equation) Let \mathcal{C}_{g_i} denote the conjugacy classes in *a group G. Then*

$$
Card(G) = Card(Z(G)) + \sum_{Card(\mathcal{C}_{g_i})>1} Card(\mathcal{C}_{g_i}).
$$

Proof. — By Corollary 1.2.5 and the fact that the \mathcal{C}_{g_i} are the orbits of *G* acting on itself by conjugation,

$$
Card(G) = \sum_{\mathcal{C}_{g_i}} Card(\mathcal{C}_{g_i}).
$$

By Lemma 1.2.14 d),

$$
Z(G) = \bigcup_{\mathrm{Card}(\mathcal{C}_{g_i})=1} \mathcal{C}_{g_i}.
$$

So

$$
Card(G) = \sum_{Card(C_{g_i})=1} Card(C_{g_i}) + \sum_{Card(C_{g_i})>1} Card(C_{g_i})
$$

$$
= Card(Z(G)) + \sum_{Card(C_{g_i})>1} Card(C_{g_i}).
$$

