G.5. Proofs: Groups

Proposition G.5.1. — Let G be a group and let H be a subgroup of G. Then the cosets of H in G partition G.

Proof. — To show: (a) If $g \in G$ then there exists $g' \in G$ such that $g \in g'H$. (b) If $g_1H \cap g_2H \neq \emptyset$ then $g_1H = g_2H$. (a) Let $g \in G$. Since $1 \in H$ then $q = q \cdot 1 \in qH$. So $g \in gH$. (b) Assume $g_1 H \cap g_2 H \neq \emptyset$. To show: (ba) $g_1H \subseteq g_2H$. (bb) $g_2H \subseteq g_1H$. Let $k \in g_1 H \cap g_2 H$. Suppose $k = g_1 h_1$ and $k = g_2 h_2$, where $h_1, h_2 \in H$. Then $g_1 = g_1 h_1 h_1^{-1} = k h_1^{-1} = g_2 h_2 h_1^{-1},$ and $g_2 = g_2 h_2 h_2^{-1} = k h_2^{-1} = g_1 h_1 h_2^{-1}.$ (ba) Let $g \in g_1 H$. Then $g = g_1 h$ for some $h \in H$. Since $h_2 h_1^{-1} h \in H$ then $q = q_1 h = q_2 h_2 h_1^{-1} h \in q_2 H.$ So $g_1H \subseteq g_2H$. (bb) Let $g \in g_2 H$. Then there exists $h \in H$ such that $g = g_2 h$. Since $h_1 h_2^{-1} h \in H$ then $q = q_2 h = q_1 h_1 h_2^{-1} h \in q_1 H$ So $g_2H \subseteq g_1H$. So $g_1H = g_2H$. So the cosets of H in G partition G.

Proposition G.5.2. — Let G be a group and let H be a subgroup of G. If $g_1, g_2 \in G$ then

 \square

$$\operatorname{Card}(g_1H) = \operatorname{Card}(g_2H).$$

Proof. –

To show: There exists a bijection $\varphi \colon g_1 H \to g_2 H$. Define

$$\begin{array}{rccc} \varphi\colon & g_1H & \to & g_2H \\ & x & \mapsto & g_2g_1^{-1}x. \end{array}$$

To show: (a) φ is well defined. (b) φ is a bijection. (a) To show: (aa) If $x \in g_1H$ then $\varphi(x) \in g_2H$. (ab) If x = y then $\varphi(x) = \varphi(y)$.

⁽aa) Assume $x \in g_1 H$.

Notes of Arun Ram aram@unimelb.edu.au, Version: 30 March 2020

Then there exists $h \in H$ such that $x = g_1 h$. So $\varphi(x) = g_2 g_1^{-1} g_1 h = g_2 h \in g_2 H.$ (ab) Assume x = y. Then $\varphi(x) = g_2 g_1^1 x = g_2 g_1^{-1} y = \varphi(y).$ So φ is well defined.

(b) Using that the inverse function exists if and only if φ is bijective, Theorem P.4.1, To show: There exists an inverse map to φ . Define

$$\begin{array}{rccc} \psi \colon & g_2 H & \to & g_1 H \\ & y & \mapsto & g_1 g_2^{-1} y. \end{array}$$

HW: Show (exactly as in (a) above) that ψ is well defined. Then

$$\psi(\varphi(x)) = g_1 g_2^{-1} \varphi(x) = g_1 g_2^{-1} g_2 g_1^{-1} x = x, \text{ and}$$

$$\varphi(\psi(y)) = g_2 g_1^{-1} \varphi(y) = g_2 g_1^{-1} g_1 g_2^{-1} y = y.$$

So ψ is an inverse function to φ .

So φ is a bijection.

Corollary G.5.3. — Let H be a subgroup of a group G. Then

$$\operatorname{Card}(G) = \operatorname{Card}(G/H)\operatorname{Card}(H).$$

Proof. — By Proposition 1.1.4, all cosets in G/H are the same size as H. Since the cosets of H partition G, the cosets are disjoint subsets of G, and G is a union of these subsets. So G is a union of Card(G/H) disjoint subsets all of which have size Card(H).

Proposition G.5.4. — Let N be a subgroup of G. The subgroup N is a normal subgroup of G if and only if G/N with the operation given by (aN)(bN) = abN is a group.

Proof. —

 \Longrightarrow :

Assume N is a normal subgroup of G.

To show: (a) (aN)(bN) = (abN) is a well defined operation on (G/N).

- (b) N is the identity element of G/N.
- (c) $g^{-1}N$ is the inverse of gN.

(a) To show: The function

$$\begin{array}{rcl} G/N \times G/N & \to & G/N \\ (aN, bN) & \mapsto & abN \end{array} \quad \text{is well defined.} \end{array}$$

To show: If $(a_1N, b_1N), (a_2N, b_2N) \in G/N \times G/N$ and $(a_1N, b_1N) = (a_2N, b_2N)$ then $a_1b_1N = a_2b_2N$. Assume $(a_1N, b_1N), (a_2N, b_2N) \in (G/N \times G/N)$ and $(a_1N, b_1N) = (a_2N, b_2N).$ Then $a_1N = a_2N$ and $b_1N = b_2N$. To show: (aa) $a_1b_1N \subseteq a_2b_2N$. (ab) $a_2b_2N \subseteq a_1b_1N$. (aa) Since $a_1N = a_2N$ then $a_1 = a_1 \cdot 1 \in a_2N$. So there exists $n_1 \in N$ such that $a_1 = a_2 n_1$. Similarly, there exists $n_2 \in N$ such that $b_1 = b_2 n_2$ for some $n_2 \in N$. Let $k \in a_1 b_1 N$.

105

Then $k = a_1 b_1 n$ for some $n \in N$. So

$$k = a_1 b_1 n = a_2 n_1 b_2 n_2 n = a_2 b_2 b_2^{-1} n_1 b_2 n_2 n.$$

Since N is normal then $b_2^{-1}n_1b_2 \in N$, and therefore $(b_2^{-1}n_1b_2)n_2n \in N$. So $k = a_2b_2(b_2^{-1}n_1b_2)n_2n \in a_2b_2N$. So $a_1b_1N \subseteq a_2b_2N$.

(ab) Since $a_1N = a_2N$ then there exists $n_1 \in N$ such that $a_1n_1 = a_2$. Since $b_1N = b_2N$ then there exists $n_2 \in N$ such that $b_1n_2 = b_2$. Let $k \in a_2b_2N$. Then there exists $n \in N$ such that $k = a_2b_2n$. So

$$k = a_2 b_2 n = a_1 n_1 b_1 n_2 n = a_1 b_1 b_1^{-1} n_1 b_1 n_2 n.$$

Since N is normal then $b_1^{-1}n_1b_1 \in N$, and therefore $(b_1^{-1}n_1b_1)n_2n \in N$. So $k = a_1b_1(b_1^{-1}n_1b_1)n_2n \in a_1b_1N$. So $a_2b_2N \subseteq a_1b_1N$.

So $(a_1b_1)N = (a_2b_2)N$.

So the operation is well defined.

(b) The coset N = 1N is the identity since if $g \in G$ then

$$(N)(gN) = (1g)N = gN = (g1)N = (gN)(N),$$

(c) Given any coset gN, its inverse is $g^{-1}N$ since

$$(gN)(g^{-1}N) = (gg^{-1})N = N = g^{-1}gN = (g^{-1}N)(gN)$$

So G/N is a group.

⇐=:

Assume (G/N) is a group with operation (aN)(bN) = abN. To show: If $g \in G$ and $n \in N$ then $gng^{-1} \in N$.

> First we show: If $n \in N$ then nN = N. Assume $n \in N$. To show: (a) $nN \subseteq N$. (b) $N \subseteq nN$. (a) Let $x \in nN$. Then there exists $m \in N$ such that x = nm. Since N is a subgroup then $nm \in N$. So $n \in N$. So $nN \subseteq N$. (b) Assume $m \in N$. Since N is a subgroup then $m = nn^{-1}m \in nN$. So $N \subseteq nN$.

Now assume $g \in \overline{G}$ and $n \in N$. Then, by definition of the operation,

$$gng^{-1}N = (gN)(nN)(g^{-1}N) = (gN)(N)(g^{-1}N) = g1g^{-1}N = N.$$

So $gng^{-1} \in N$.

So N is a normal subgroup of G.

Proposition G.5.5. — Let $f: G \to H$ be a group homomorphism. Let 1_G and 1_H be the identities for G and H respectively. Then (a) $f(1_G) = 1_H$. (b) For any $g \in G$, $f(g^{-1}) = f(g)^{-1}$.

Proof. —

(a) Multiply both sides of the following equation by $f(1_G)^{-1}$:

$$f(1_G) = f(1_G \cdot 1_G) = f(1_G)f(1_G).$$
(b) Since $f(g)f(g^{-1}) = f(gg^{-1}) = f(1_G) = 1_H$ and $f(g^{-1})f(g) = f(g^{-1}g) = f(1_G) = 1_H$ then
$$f(g)^{-1} = f(g^{-1}).$$

Proposition G.5.6. — Let $f: G \to H$ be a group homomorphism. Let 1_G and 1_H be the identities for G and H respectively. Then

(a) ker f is a normal subgroup of G.(b) im f is a subgroup of H.

Proof. —

To show: (a) ker f is a normal subgroup of G. (b) $\operatorname{im} f$ is a subgroup of G. (a) To show: (aa) ker f is a subgroup. (ab) ker f is normal. (aa) To show: (aaa) If $k_1, k_2 \in \ker f$ then $k_1k_2 \in \ker f$. (aab) $1_G \in \ker f$. (aac) If $k \in \ker f$ then $k^{-1} \in \ker f$. (aaa) Assume $k_1, k_2 \in \ker f$. Then $f(k_1) = 1_H$ and $f(k_2) = 1_H$. So $f(k_1k_2) = f(k_1)f(k_2) = 1_H$. So $k_1k_2 \in \ker f$. (aab) Since $f(1_G) = 1_H$ then $1_G \in \ker f$. (aac) Assume $k \in \ker f$. Since $f(k) = 1_H$ then $f(k^{-1}) = f(k)^{-1} = 1_H^{-1} = 1_H.$ So $k^{-1} \in \ker f$. So ker f is a subgroup. (ab) To show: If $g \in G$ and $k \in \ker f$ then $gkg^{-1} \in \ker f$. Assume $q \in G$ and $k \in \ker f$. Then $f(qkq^{-1}) = f(q)f(k)f(q^{-1}) = f(q)f(q^{-1}) = f(q)f(q)^{-1} = 1.$ So $gkg^{-1} \in \ker f$. So ker f is a normal subgroup of G. (b) To show: $\operatorname{im} f$ is a subgroup of H. To show: (ba) If $h_1, h_2 \in \inf f$ then $h_1h_2 \in \inf f$. (bb) $1_H \in \text{im} f$. (bc) If $h \in \inf f$ then $h^{-1} \in \inf f$. (ba) Assume $h_1, h_2 \in \text{im} f$. Then there exist $g_1, g_2 \in G$ such that $h_1 = f(g_1)$ and $h_2 = f(g_2)$. Since f is a homomorphism then

$$h_1h_2 = f(g_1)f(g_2) = f(g_1g_2)$$

So $h_1h_2 \in \operatorname{im} f$.

(bb) By Proposition 1.1.11 (a), f(1_G) = 1_H. So 1_H ∈ imf.
(bc) Assume h ∈ imf. Then there exists g ∈ G such that h = f(g). Then, by Proposition 1.1.11 b), h⁻¹ = f(q)⁻¹ = f(q⁻¹).

So $h^{-1} \in \operatorname{im} f$.

So $\operatorname{im} f$ is a subgroup of H.

Proposition G.5.7. — Let $f: G \to H$ be a group homomorphism. Let 1_G be the identity in G. Then

(a) ker $f = (1_G)$ if and only if f is injective.

(b) im f = H if and only if f is surjective.

Proof. —

(a) Let 1_G and 1_H be the identities for G and H respectively.

 \implies : Assume ker $f = (1_G)$.

To show: If $f(g_1) = f(g_2)$ then $g_1 = g_2$. Assume $f(g_1) = f(g_2)$. Then, by Proposition 1.1.11 b) and the fact that f is a homomorphism,

$$1_H = f(g_1)f(g_2)^{-1} = f(g_1g_2^{-1}).$$

So $g_1g_2^{-1} \in \ker f$. But ker $f = (1_G)$. So $g_1 g_2^{-1} = 1_G$. So $g_1 = g_2$. So f is injective. \Leftarrow : Assume f is injective. To show: (aa) $(1_G) \subseteq \ker f$. (ab) ker $f \subseteq (1_G)$. (aa) Since $f(1_G) = 1_H$ then $1_G \in \ker f$. So $(1_G) \subseteq \ker f$. (ab) Let $k \in \ker f$. Then $f(k) = 1_H$. So $f(k) = f(1_G)$. Thus, since f is injective then $k = 1_G$. So ker $f \subseteq (1_G)$. So ker $f = (1_G)$. (b) \implies : Assume $\operatorname{im} f = H$. To show: If $h \in H$ then there exists $g \in G$ such that f(g) = h. Assume $h \in H$. Then $h \in \operatorname{im} f$. So there exists some $g \in G$ such that f(g) = h. So f is surjective. \Leftarrow : Assume f is surjective. To show: (ba) $\operatorname{im} f \subseteq H$. (bb) $H \subseteq \operatorname{im} f$.

- (ba) Let $x \in \inf f$. Then x = f(g) for some $g \in G$. By the definition of $f, f(g) \in H$. So $x \in H$. So $\inf f \subseteq H$. (bb) Assume $x \in H$.
- (bb) Assume $x \in H$. Since f is surjective there exists a g such that f(g) = x. So $x \in \inf f$. So $H \subseteq \inf f$. So $\inf f = H$.

Theorem G.5.8. —

(a) Let $f: G \to H$ be a group homomorphism and let $K = \ker f$. Define

$$\begin{array}{rccc} f \colon & G/\ker f & \longrightarrow & H \\ & gK & \longmapsto & f(g). \end{array}$$

Then \hat{f} is a well defined injective group homomorphism. (b) Let $f: G \to H$ be a group homomorphism and define

$$\begin{array}{rccc} f'\colon & G & \longrightarrow & \inf f \\ & g & \mapsto & f(g). \end{array}$$

Then f' is a well defined surjective group homomorphism. (c) If $f: G \to H$ is a group homomorphism then

$$G/\ker f \simeq \operatorname{im} f,$$

where the isomorphism is a group isomorphism.

Proof. —

(a) To show: (aa) \hat{f} is well defined. (ab) \hat{f} is injective. (ac) \hat{f} is a homomorphism. (aa) To show: (aaa) If $g \in G$ then $\hat{f}(gK) \in H$. (aab) If $g_1K = g_2K$ then $\hat{f}(g_1K) = \hat{f}(g_2K)$. (aaa) Assume $g \in G$. Then f(gK) = f(g) and $f(g) \in H$, by the definition of f and f. (aab) Assume $q_1 K = q_2 K$. Then there exists $k \in K$ such that $g_1 = g_2 k$. To show: $f(g_1K) = f(g_2K)$. To show: $f(g_1) = f(g_2)$. Since $k \in \ker f$ then f(k) = 1 and so $f(g_1) = f(g_2k) = f(g_2)f(k) = f(g_2).$ So $\hat{f}(g_1K) = \hat{f}(g_2K)$. So \hat{f} is well defined. (ab) To show: If $\hat{f}(g_1K) = \hat{f}(g_2K)$ then $g_1K = g_2K$. Assume $\hat{f}(g_1K) = \hat{f}(g_2K)$. Then $f(g_1) = f(g_2)$. So $f(g_2)^{-1}f(g_1) = 1$. So $f(g_2^{-1}g_1) = 1$.

So $g_2^{-1}g_1 \in \ker f$. So there exists $k \in \ker f$ such that $g_2^{-1}g_1 = k$. So there exists $k \in \ker f$ such that $g_1 = g_2 k$. To show: (aba) $g_1 K \subseteq g_2 K$. (abb) $g_2 K \subseteq g_1 K$. (aba) Let $g \in g_1 K$. Then there exists $k_1 \in K$ such that $g = g_1 k_1$. So $g = g_2 k k_1 \in g_2 K$, since $k k_1 \in K$. So $g_1 K \subseteq g_2 K$. (abb) Let $g \in g_2 K$. Then there exists $k_2 \in K$ such that $g = g_2 k_2$. So $g = g_1 k^{-1} k_2 \in g_1 K$ since $k^{-1} k_2 \in K$. So $g_2 K \subseteq g_1 K$. So $g_1 K = g_2 K$. So \hat{f} is injective. (ac) To show: $\hat{f}(q_1K)\hat{f}(q_2K) = \hat{f}((q_1K)(q_2K)).$

Since f is a homomorphism,

$$\hat{f}(g_1K)\hat{f}(g_2K) = f(g_1)f(g_2) = f(g_1g_2) = \hat{f}(g_1g_2K) = \hat{f}((g_1K)(g_2K)).$$

So \hat{f} is a homomorphism.

- (b) To show: (ba) f' is well defined.
 - (bb) f' is surjective.
 - (bc) f' is a homomorphism.
 - (ba) and (bb) are proved in Ex. 2.2.3, Part I.
 - (bc) Since f is a homomorphism,

$$f'(g)f'(h) = f(g)f(h) = f(gh) = f'(gh).$$

(c) Let $K = \ker f$.

By a), the function

$$\begin{array}{cccc} \hat{f} \colon & G/K & \longrightarrow & H \\ & gK & \longmapsto & f(g) \end{array}$$

is a well defined injective homomorphism. By b), the function

$$\begin{array}{rccc} \hat{f'} \colon & G/K & \longrightarrow & \mathrm{im}\hat{f} \\ & gK & \longmapsto & \hat{f}(gK) = f(g) \end{array}$$

is a well defined surjective homomorphism. To show: (ca) $im\hat{f} = imf$.

(cb) \hat{f}' is injective.

(ca) To show: (caa) $\inf \hat{f} \subseteq \inf f$. (cab) $\inf f \subseteq \inf \hat{f}$. (caa) Let $h \in \inf \hat{f}$. Then there exists $gK \in G/K$ such that $\hat{f}(gK) = h$. Let $g' \in gK$. Then there exists $k \in K$ such that g' = gk. Since f is a homomorphism and f(k) = 1 then

$$f(g') = f(gk) = f(g)f(k) = f(g) = \hat{f}(gK) = h.$$

So
$$h \in \inf f$$
.
So $\inf \hat{f} \subseteq \inf f$.
(cab) Let $h \in \inf f$.
Then there exists $g \in G$ such that $f(g) = h$.
So $\hat{f}(gK) = f(g) = h$.
So $h \in \inf \hat{f}$.
(cb) To show: If $\hat{f}'(g_1K) = \hat{f}'(g_2K)$ then $g_1K = g_2K$.
Assume $\hat{f}'(g_1K) = \hat{f}'(g_2K)$.
Then $\hat{f}(g_1K) = \hat{f}(g_2K)$.
Then, since \hat{f} is injective, $g_1K = g_2K$.
So \hat{f}' is injective.
Thus
 $\hat{f}': G/K \longrightarrow \inf \hat{f}$

$$\begin{array}{cccc} & G/K & \longrightarrow & \Pi\Pi f \\ & gK & \longmapsto & f(g) \end{array}$$

is a well defined bijective homomorphism.