G.5. Proofs: Groups

Proposition G.5.1. - Let G be a group and let H be a subgroup of G. Then the cosets of H in G partition G.

Proof. -
To show: (a) If $g \in G$ then there exists $g^{\prime} \in G$ such that $g \in g^{\prime} H$.
(b) If $g_{1} H \cap g_{2} H \neq \emptyset$ then $g_{1} H=g_{2} H$.
(a) Let $g \in G$.

Since $1 \in H$ then $g=g \cdot 1 \in g H$.
So $g \in g H$.
(b) Assume $g_{1} H \cap g_{2} H \neq \emptyset$.

To show: (ba) $g_{1} H \subseteq g_{2} H$.
(bb) $g_{2} H \subseteq g_{1} H$.
Let $k \in g_{1} H \cap g_{2} H$.
Suppose $k=g_{1} h_{1}$ and $k=g_{2} h_{2}$, where $h_{1}, h_{2} \in H$.
Then

$$
\begin{aligned}
& g_{1}=g_{1} h_{1} h_{1}^{-1}=k h_{1}^{-1}=g_{2} h_{2} h_{1}^{-1}, \quad \text { and } \\
& g_{2}=g_{2} h_{2} h_{2}^{-1}=k h_{2}^{-1}=g_{1} h_{1} h_{2}^{-1} .
\end{aligned}
$$

(ba) Let $g \in g_{1} H$.
Then $g=g_{1} h$ for some $h \in H$.
Since $h_{2} h_{1}^{-1} h \in H$ then

$$
g=g_{1} h=g_{2} h_{2} h_{1}^{-1} h \in g_{2} H .
$$

So $g_{1} H \subseteq g_{2} H$.
(bb) Let $g \in g_{2} H$.
Then there exists $h \in H$ such that $g=g_{2} h$.
Since $h_{1} h_{2}^{-1} h \in H$ then

$$
g=g_{2} h=g_{1} h_{1} h_{2}^{-1} h \in g_{1} H
$$

So $g_{2} H \subseteq g_{1} H$.
So $g_{1} H=g_{2} H$.
So the cosets of H in G partition G.
Proposition G.5.2. - Let G be a group and let H be a subgroup of G. If $g_{1}, g_{2} \in G$ then

$$
\operatorname{Card}\left(g_{1} H\right)=\operatorname{Card}\left(g_{2} H\right) .
$$

Proof. -
To show: There exists a bijection $\varphi: g_{1} H \rightarrow g_{2} H$.
Define

$$
\begin{aligned}
& \varphi: \quad g_{1} H \rightarrow g_{2} H \\
& x \mapsto \\
& g_{2} g_{1}^{-1} x .
\end{aligned}
$$

To show: (a) φ is well defined.
(b) φ is a bijection.
(a) To show: (aa) If $x \in g_{1} H$ then $\varphi(x) \in g_{2} H$.

$$
\text { (ab) If } x=y \text { then } \varphi(x)=\varphi(y)
$$

(aa) Assume $x \in g_{1} H$.

[^0]Then there exists $h \in H$ such that $x=g_{1} h$.
So $\varphi(x)=g_{2} g_{1}^{-1} g_{1} h=g_{2} h \in g_{2} H$.
(ab) Assume $x=y$.
Then $\varphi(x)=g_{2} g_{1}^{1} x=g_{2} g_{1}^{-1} y=\varphi(y)$.
So φ is well defined.
(b) Using that the inverse function exists if and only if φ is bijective, Theorem P.4.1, To show: There exists an inverse map to φ.
Define

$$
\begin{aligned}
& \psi: \quad g_{2} H \rightarrow \\
& y \mapsto \\
& g_{1} H \\
& g_{2}^{-1} y .
\end{aligned}
$$

HW: Show (exactly as in (a) above) that ψ is well defined.
Then

$$
\begin{aligned}
& \psi(\varphi(x))=g_{1} g_{2}^{-1} \varphi(x)=g_{1} g_{2}^{-1} g_{2} g_{1}^{-1} x=x, \quad \text { and } \\
& \varphi(\psi(y))=g_{2} g_{1}^{-1} \varphi(y)=g_{2} g_{1}^{-1} g_{1} g_{2}^{-1} y=y .
\end{aligned}
$$

So ψ is an inverse function to φ.
$\mathrm{So} \varphi$ is a bijection.
Corollary G.5.3. - Let H be a subgroup of a group G. Then

$$
\operatorname{Card}(G)=\operatorname{Card}(G / H) \operatorname{Card}(H)
$$

Proof. - By Proposition 1.1.4, all cosets in G / H are the same size as H. Since the cosets of H partition G, the cosets are disjoint subsets of G, and G is a union of these subsets.
So G is a union of $\operatorname{Card}(G / H)$ disjoint subsets all of which have size $\operatorname{Card}(H)$.
Proposition G.5.4. - Let N be a subgroup of G. The subgroup N is a normal subgroup of G if and only if G / N with the operation given by $(a N)(b N)=a b N$ is a group.

Proof. -
\Longrightarrow :
Assume N is a normal subgroup of G.
To show: (a) $(a N)(b N)=(a b N)$ is a well defined operation on (G / N).
(b) N is the identity element of G / N.
(c) $g^{-1} N$ is the inverse of $g N$.
(a) To show: The function

$$
\begin{array}{ccc}
G / N \times G / N & \rightarrow G / N \\
(a N, b N) & \mapsto a b N
\end{array}
$$

To show: If $\left(a_{1} N, b_{1} N\right),\left(a_{2} N, b_{2} N\right) \in G / N \times G / N$ and $\left(a_{1} N, b_{1} N\right)=\left(a_{2} N, b_{2} N\right)$ then $a_{1} b_{1} N=a_{2} b_{2} N$.
Assume $\left(a_{1} N, b_{1} N\right),\left(a_{2} N, b_{2} N\right) \in(G / N \times G / N)$ and $\left(a_{1} N, b_{1} N\right)=\left(a_{2} N, b_{2} N\right)$.
Then $a_{1} N=a_{2} N$ and $b_{1} N=b_{2} N$.
To show: (aa) $a_{1} b_{1} N \subseteq a_{2} b_{2} N$.
(ab) $a_{2} b_{2} N \subseteq a_{1} b_{1} N$.
(aa) Since $a_{1} N=a_{2} N$ then $a_{1}=a_{1} \cdot 1 \in a_{2} N$.
So there exists $n_{1} \in N$ such that $a_{1}=a_{2} n_{1}$.
Similary, there exists $n_{2} \in N$ such that $b_{1}=b_{2} n_{2}$ for some $n_{2} \in N$.
Let $k \in a_{1} b_{1} N$.

Then $k=a_{1} b_{1} n$ for some $n \in N$. So

$$
k=a_{1} b_{1} n=a_{2} n_{1} b_{2} n_{2} n=a_{2} b_{2} b_{2}^{-1} n_{1} b_{2} n_{2} n .
$$

Since N is normal then $b_{2}^{-1} n_{1} b_{2} \in N$, and therefore $\left(b_{2}^{-1} n_{1} b_{2}\right) n_{2} n \in N$.
So $k=a_{2} b_{2}\left(b_{2}^{-1} n_{1} b_{2}\right) n_{2} n \in a_{2} b_{2} N$.
So $a_{1} b_{1} N \subseteq a_{2} b_{2} N$.
(ab) Since $a_{1} N=a_{2} N$ then there exists $n_{1} \in N$ such that $a_{1} n_{1}=a_{2}$.
Since $b_{1} N=b_{2} N$ then there exists $n_{2} \in N$ such that $b_{1} n_{2}=b_{2}$.
Let $k \in a_{2} b_{2} N$.
Then there exists $n \in N$ such that $k=a_{2} b_{2} n$.
So

$$
k=a_{2} b_{2} n=a_{1} n_{1} b_{1} n_{2} n=a_{1} b_{1} b_{1}^{-1} n_{1} b_{1} n_{2} n .
$$

Since N is normal then $b_{1}^{-1} n_{1} b_{1} \in N$, and therefore $\left(b_{1}^{-1} n_{1} b_{1}\right) n_{2} n \in N$.
So $k=a_{1} b_{1}\left(b_{1}^{-1} n_{1} b_{1}\right) n_{2} n \in a_{1} b_{1} N$.
So $a_{2} b_{2} N \subseteq a_{1} b_{1} N$.
So $\left(a_{1} b_{1}\right) N=\left(a_{2} b_{2}\right) N$.
So the operation is well defined.
(b) The $\operatorname{coset} N=1 N$ is the identity since if $g \in G$ then

$$
(N)(g N)=(1 g) N=g N=(g 1) N=(g N)(N),
$$

(c) Given any coset $g N$, its inverse is $g^{-1} N$ since

$$
(g N)\left(g^{-1} N\right)=\left(g g^{-1}\right) N=N=g^{-1} g N=\left(g^{-1} N\right)(g N) .
$$

So G / N is a group.
$\Longleftarrow:$
Assume (G / N) is a group with operation $(a N)(b N)=a b N$.
To show: If $g \in G$ and $n \in N$ then $g n g^{-1} \in N$.
First we show: If $n \in N$ then $n N=N$.
Assume $n \in N$.
To show: (a) $n N \subseteq N . \quad$ (b) $N \subseteq n N$.
(a) Let $x \in n N$.

Then there exists $m \in N$ such that $x=n m$.
Since N is a subgroup then $n m \in N$.
So $x \in N$.
So $n N \subseteq N$.
(b) Assume $m \in N$.

Since N is a subgroup then $m=n n^{-1} m \in n N$.
So $N \subseteq n N$.
Now assume $g \in G$ and $n \in N$.
Then, by definition of the operation,

$$
g n g^{-1} N=(g N)(n N)\left(g^{-1} N\right)=(g N)(N)\left(g^{-1} N\right)=g 1 g^{-1} N=N .
$$

So $g n g^{-1} \in N$.
So N is a normal subgroup of G.
Proposition G.5.5. - Let $f: G \rightarrow H$ be a group homomorphism. Let 1_{G} and 1_{H} be the identities for G and H respectively. Then
(a) $f\left(1_{G}\right)=1_{H}$.
(b) For any $g \in G, f\left(g^{-1}\right)=f(g)^{-1}$.

Proof. -
(a) Multiply both sides of the following equation by $f\left(1_{G}\right)^{-1}$:

$$
f\left(1_{G}\right)=f\left(1_{G} \cdot 1_{G}\right)=f\left(1_{G}\right) f\left(1_{G}\right)
$$

(b) Since $f(g) f\left(g^{-1}\right)=f\left(g g^{-1}\right)=f\left(1_{G}\right)=1_{H}$ and $f\left(g^{-1}\right) f(g)=f\left(g^{-1} g\right)=f\left(1_{G}\right)=1_{H}$ then

$$
f(g)^{-1}=f\left(g^{-1}\right) .
$$

Proposition G.5.6. - Let $f: G \rightarrow H$ be a group homomorphism. Let 1_{G} and 1_{H} be the identities for G and H respectively. Then
(a) $\operatorname{ker} f$ is a normal subgroup of G.
(b) $\operatorname{im} f$ is a subgroup of H.

Proof. -
To show: (a) $\operatorname{ker} f$ is a normal subgroup of G.
(b) $\operatorname{im} f$ is a subgroup of G.
(a) To show: (aa) ker f is a subgroup.
(ab) $\operatorname{ker} f$ is normal.
(aa) To show: (aaa) If $k_{1}, k_{2} \in \operatorname{ker} f$ then $k_{1} k_{2} \in \operatorname{ker} f$.
(aab) $1_{G} \in \operatorname{ker} f$.
(aac) If $k \in \operatorname{ker} f$ then $k^{-1} \in \operatorname{ker} f$.
(aaa) Assume $k_{1}, k_{2} \in \operatorname{ker} f$.
Then $f\left(k_{1}\right)=1_{H}$ and $f\left(k_{2}\right)=1_{H}$.
So $f\left(k_{1} k_{2}\right)=f\left(k_{1}\right) f\left(k_{2}\right)=1_{H}$.
So $k_{1} k_{2} \in \operatorname{ker} f$.
(aab) Since $f\left(1_{G}\right)=1_{H}$ then $1_{G} \in \operatorname{ker} f$.
(aac) Assume $k \in \operatorname{ker} f$.
Since $f(k)=1_{H}$ then

$$
f\left(k^{-1}\right)=f(k)^{-1}=1_{H}^{-1}=1_{H} .
$$

So $k^{-1} \in \operatorname{ker} f$.
So ker f is a subgroup.
(ab) To show: If $g \in G$ and $k \in \operatorname{ker} f$ then $g k g^{-1} \in \operatorname{ker} f$.
Assume $g \in G$ and $k \in \operatorname{ker} f$.
Then

$$
f\left(g k g^{-1}\right)=f(g) f(k) f\left(g^{-1}\right)=f(g) f\left(g^{-1}\right)=f(g) f(g)^{-1}=1 .
$$

So $g k g^{-1} \in \operatorname{ker} f$.
So $\operatorname{ker} f$ is a normal subgroup of G.
(b) To show: $\operatorname{im} f$ is a subgroup of H.

To show: (ba) If $h_{1}, h_{2} \in \operatorname{im} f$ then $h_{1} h_{2} \in \operatorname{im} f$.

$$
\begin{aligned}
& \text { (bb) } 1_{H} \in \operatorname{im} f \text {. } \\
& \text { (bc) If } h \in \operatorname{im} f \text { then } h^{-1} \in \operatorname{im} f .
\end{aligned}
$$

(ba) Assume $h_{1}, h_{2} \in \operatorname{im} f$.
Then there exist $g_{1}, g_{2} \in G$ such that $h_{1}=f\left(g_{1}\right)$ and $h_{2}=f\left(g_{2}\right)$.
Since f is a homomorphism then

$$
h_{1} h_{2}=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right)
$$

So $h_{1} h_{2} \in \operatorname{im} f$.
(bb) By Proposition 1.1.11 (a), $f\left(1_{G}\right)=1_{H}$.
So $1_{H} \in \operatorname{im} f$.
(bc) Assume $h \in \operatorname{im} f$.
Then there exists $g \in G$ such that $h=f(g)$.
Then, by Proposition 1.1.11 b),

$$
h^{-1}=f(g)^{-1}=f\left(g^{-1}\right)
$$

So $h^{-1} \in \operatorname{im} f$.
So $\operatorname{im} f$ is a subgroup of H.

Proposition G.5.7. - Let $f: G \rightarrow H$ be a group homomorphism. Let 1_{G} be the identity in G. Then
(a) $\operatorname{ker} f=\left(1_{G}\right)$ if and only if f is injective.
(b) $\operatorname{im} f=H$ if and only if f is surjective.

Proof. -
(a) Let 1_{G} and 1_{H} be the identities for G and H respectively.
\Longrightarrow : Assume ker $f=\left(1_{G}\right)$.
To show: If $f\left(g_{1}\right)=f\left(g_{2}\right)$ then $g_{1}=g_{2}$.
Assume $f\left(g_{1}\right)=f\left(g_{2}\right)$.
Then, by Proposition 1.1.11 b) and the fact that f is a homomorphism,

$$
1_{H}=f\left(g_{1}\right) f\left(g_{2}\right)^{-1}=f\left(g_{1} g_{2}^{-1}\right)
$$

So $g_{1} g_{2}^{-1} \in \operatorname{ker} f$.
But ker $f=\left(1_{G}\right)$.
So $g_{1} g_{2}^{-1}=1_{G}$.
So $g_{1}=g_{2}$.
So f is injective.
\Longleftarrow : Assume f is injective.
To show: $(\mathrm{aa})\left(1_{G}\right) \subseteq \operatorname{ker} f$.
(ab) $\operatorname{ker} f \subseteq\left(1_{G}\right)$.
(aa) Since $f\left(1_{G}\right)=1_{H}$ then $1_{G} \in \operatorname{ker} f$.
So $\left(1_{G}\right) \subseteq \operatorname{ker} f$.
(ab) Let $k \in \operatorname{ker} f$.
Then $f(k)=1_{H}$.
So $f(k)=f\left(1_{G}\right)$.
Thus, since f is injective then $k=1_{G}$.
So ker $f \subseteq\left(1_{G}\right)$.
So ker $f=\left(1_{G}\right)$.
$(\mathrm{b}) \Longrightarrow$: Assume $\operatorname{im} f=H$.
To show: If $h \in H$ then there exists $g \in G$ such that $f(g)=h$.
Assume $h \in H$.
Then $h \in \operatorname{im} f$.
So there exists some $g \in G$ such that $f(g)=h$.
So f is surjective.
\Longleftarrow : Assume f is surjective.
To show: (ba) $\operatorname{im} f \subseteq H$.

$$
\text { (bb) } H \subseteq \overline{\operatorname{im}} f
$$

(ba) Let $x \in \operatorname{im} f$.
Then $x=f(g)$ for some $g \in G$.
By the definition of $f, f(g) \in H$.
So $x \in H$.
So $\operatorname{im} f \subseteq H$.
(bb) Assume $x \in H$.
Since f is surjective there exists a g such that $f(g)=x$.
So $x \in \operatorname{im} f$.
So $H \subseteq \operatorname{im} f$.
So $\operatorname{im} f=H$.
Theorem G.5.8. -
(a) Let $f: G \rightarrow H$ be a group homomorphism and let $K=\operatorname{ker} f$. Define

$$
\left.\begin{array}{rl}
\hat{f}: \quad G / \operatorname{ker} f & \longrightarrow
\end{array} \begin{array}{r}
H \\
g K
\end{array}\right) \longmapsto f(g) .
$$

Then \hat{f} is a well defined injective group homomorphism.
(b) Let $f: G \rightarrow H$ be a group homomorphism and define

$$
\left.\begin{array}{rl}
f^{\prime}: \quad G & \longrightarrow \operatorname{imf} \\
g & \mapsto
\end{array}\right)
$$

Then f^{\prime} is a well defined surjective group homomorphism.
(c) If $f: G \rightarrow H$ is a group homomorphism then

$$
G / \operatorname{ker} f \simeq \operatorname{im} f
$$

where the isomorphism is a group isomorphism.
Proof. -
(a) To show: (aa) \hat{f} is well defined.
(ab) \hat{f} is injective.
(ac) \hat{f} is a homomorphism.
(aa) To show: (aaa) If $g \in G$ then $\hat{f}(g K) \in H$.

$$
\text { (aab) If } g_{1} K=g_{2} K \text { then } \hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)
$$

(aaa) Assume $g \in G$.
Then $\hat{f}(g K)=f(g)$ and $f(g) \in H$, by the definition of \hat{f} and f.
(aab) Assume $g_{1} K=g_{2} K$.
Then there exists $k \in K$ such that $g_{1}=g_{2} k$.
To show: $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
To show: $f\left(g_{1}\right)=f\left(g_{2}\right)$.
Since $k \in \operatorname{ker} f$ then $f(k)=1$ and so

$$
f\left(g_{1}\right)=f\left(g_{2} k\right)=f\left(g_{2}\right) f(k)=f\left(g_{2}\right) .
$$

So $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
So \hat{f} is well defined.
(ab) To show: If $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$ then $g_{1} K=g_{2} K$.
Assume $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
Then $f\left(g_{1}\right)=f\left(g_{2}\right)$.
So $f\left(g_{2}\right)^{-1} f\left(g_{1}\right)=1$.
So $f\left(g_{2}^{-1} g_{1}\right)=1$.

So $g_{2}^{-1} g_{1} \in \operatorname{ker} f$.
So there exists $k \in \operatorname{ker} f$ such that $g_{2}^{-1} g_{1}=k$.
So there exists $k \in \operatorname{ker} f$ such that $g_{1}=g_{2} k$.
To show: (aba) $g_{1} K \subseteq g_{2} K$.

$$
\text { (abb) } g_{2} K \subseteq g_{1} K
$$

(aba) Let $g \in g_{1} K$.
Then there exists $k_{1} \in K$ such that $g=g_{1} k_{1}$.
So $g=g_{2} k k_{1} \in g_{2} K$, since $k k_{1} \in K$.
So $g_{1} K \subseteq g_{2} K$.
(abb) Let $g \in g_{2} K$.
Then there exists $k_{2} \in K$ such that $g=g_{2} k_{2}$.
So $g=g_{1} k^{-1} k_{2} \in g_{1} K$ since $k^{-1} k_{2} \in K$.
So $g_{2} K \subseteq g_{1} K$.
So $g_{1} K=g_{2} K$.
So \hat{f} is injective.
(ac) To show: $\hat{f}\left(g_{1} K\right) \hat{f}\left(g_{2} K\right)=\hat{f}\left(\left(g_{1} K\right)\left(g_{2} K\right)\right)$.
Since f is a homomorphism,

$$
\hat{f}\left(g_{1} K\right) \hat{f}\left(g_{2} K\right)=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right)=\hat{f}\left(g_{1} g_{2} K\right)=\hat{f}\left(\left(g_{1} K\right)\left(g_{2} K\right)\right)
$$

So \hat{f} is a homomorphism.
(b) To show: (ba) f^{\prime} is well defined.
(bb) f^{\prime} is surjective.
(bc) f^{\prime} is a homomorphism.
(ba) and (bb) are proved in Ex. 2.2.3, Part I.
(bc) Since f is a homomorphism,

$$
f^{\prime}(g) f^{\prime}(h)=f(g) f(h)=f(g h)=f^{\prime}(g h) .
$$

(c) Let $K=\operatorname{ker} f$.

By a), the function

$$
\begin{array}{cccc}
\hat{f}: \quad G / K & \longrightarrow & H \\
g K & \longmapsto & f(g)
\end{array}
$$

is a well defined injective homomorphism.
By b), the function

$$
\begin{array}{rlcc}
\hat{f}^{\prime}: \quad G / K & \longrightarrow & \operatorname{im} \hat{f} \\
g K & \longmapsto & \hat{f}(g K)=f(g)
\end{array}
$$

is a well defined surjective homomorphism.
To show: (ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
(cb) \hat{f}^{\prime} is injective.
(ca) To show: (caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.

$$
(\mathrm{cab}) \operatorname{im} f \subseteq \operatorname{im} \hat{f}
$$

(caa) Let $h \in \operatorname{im} \hat{f}$.
Then there exists $g K \in G / K$ such that $\hat{f}(g K)=h$.
Let $g^{\prime} \in g K$.
Then there exists $k \in K$ such that $g^{\prime}=g k$.
Since f is a homomorphism and $f(k)=1$ then

$$
f\left(g^{\prime}\right)=f(g k)=f(g) f(k)=f(g)=\hat{f}(g K)=h .
$$

So $h \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
(cab) Let $h \in \operatorname{im} f$.
Then there exists $g \in G$ such that $f(g)=h$.
So $\hat{f}(g K)=f(g)=h$.
So $h \in \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
(cb) To show: If $\widehat{f^{\prime}}\left(g_{1} K\right)=\hat{f}^{\prime}\left(g_{2} K\right)$ then $g_{1} K=g_{2} K$.
Assume $\hat{f}^{\prime}\left(g_{1} K\right)=\hat{f}^{\prime}\left(g_{2} K\right)$.
Then $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
Then, since \hat{f} is injective, $g_{1} K=g_{2} K$.
So \hat{f}^{\prime} is injective.
Thus

$$
\begin{aligned}
\hat{f}^{\prime}: \quad G / K & \longrightarrow \operatorname{imf} \\
g K & \longmapsto f(g)
\end{aligned}
$$

is a well defined bijective homomorphism.

[^0]: Notes of Arun Ram aram@unimelb.edu.au, Version: 30 March 2020

