R.6. Proofs: Modules

Proposition R.6.1. - Let M be a left R-module and let N be a subgroup of M. Then the cosets of N in M partition M.

Proof. -
To show: (a) If $m \in M$ then there exists $m^{\prime} \in M$ such that $m \in m^{\prime}+N$.
(b) If $\left(m_{1}+N\right) \cap\left(m_{2}+N\right) \neq \emptyset$ then $m_{1}+N=m_{2}+N$.
(a) Let $m \in M$.

Since $0 \in N$ then $m=m+0 \in m+N$.
So $m \in m+N$.
(b) Assume $\left(m_{1}+N\right) \cap\left(m_{2}+N\right) \neq \emptyset$.

To show: (ba) $m_{1}+N \subseteq m_{2}+N$.

$$
\text { (bb) } m_{2}+N \subseteq m_{1}+N \text {. }
$$

Let $a \in\left(m_{1}+N\right) \cap\left(m_{2}+N\right)$.
So there exist $n_{1}, n_{2} \in \mathrm{~N}$ such that $a=m_{1}+n_{1}$ and $a=m_{2}+n_{2}$.
Then

$$
\begin{aligned}
& m_{1}=m_{1}+n_{1}-n_{1}=a-n_{1}=m_{2}+n_{2}-n_{1} \quad \text { and } \\
& m_{2}=m_{2}+n_{2}-n_{2}=a-n_{2}=m_{1}+n_{1}-n_{2} .
\end{aligned}
$$

(ba) Let $m \in m_{1}+N$.
Then there exists $n \in N$ such that $m=m_{1}+n$.
Then

$$
m=m_{1}+n=m_{2}+n_{2}-n_{1}+n \in m_{2}+N
$$

since $n_{2}-n_{1}+n \in N$.
So $m_{1}+N \subseteq m_{2}+N$.
(bb) Let $m \in m_{2}+N$.
Then there exists $n \in N$ such that $m=m_{2}+n$.
Since $n_{1}-n_{2}+n \in N$ then

$$
m=m_{2}+n=m_{1}+n_{1}-n_{2}+n \in m_{1}+N
$$

So $m_{2}+N \subseteq m_{1}+N$.
So $m_{1}+N=m_{2}+N$.
So the cosets of N in M partition M.
Theorem R.6.2. - Let N be a subgroup of a left R-module M. Then N is a submodule of M if and only if M / N with the operations given by

$$
\begin{aligned}
\left(m_{1}+N\right)+\left(m_{2}+N\right) & =\left(m_{1}+m_{2}\right)+N, \quad \text { and } \\
r\left(m_{1}+N\right) & =r m_{1}+N
\end{aligned}
$$

is a left R-module.

Proof. -

\Longrightarrow : Assume N is a submodule of M.
To show: (a) $\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{1}+m_{2}\right)+N$ is a well defined operation on M / N.
(b) The operation given by $r(m+N)=r m+N$ is well defined.
(c) If $m_{1}+N, m_{2}+N, m_{3}+N \in M / N$ then $\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right)+$ $\left(m_{3}+N\right)=\left(m_{1}+N\right)+\left(\left(m_{2}+N\right)+\left(m_{3}+N\right)\right)$.
(d) If $m_{1}+N, m_{2}+N \in M / N$ then $\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{2}+N\right)+$ $\left(m_{1}+N\right)$.
(e) $0+N=N$ is the zero in M / N.
(f) $-m+N$ is the additive inverse of $m+N$.
(g) If $r_{1}, r_{2} \in R$ and $m+N \in M / N$, then $r_{1}\left(r_{2}(m+N)\right)=\left(r_{1} r_{2}\right)(m+N)$.
(h) If $m+N \in M / N$ then $1(m+N)=m+N$.
(i) If $r \in R$ and $m_{1}+N, m_{2}+N \in M / N$ then $r\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right)=$ $r\left(m_{1}+N\right)+r\left(m_{2}+N\right)$.
(j) If $r_{1}, r_{2} \in R$ and $m+N \in M / N$, then $\left(r_{1}+r_{2}\right)(m+N)=r_{1}(m+N)+$ $r_{2}(m+N)$.
(a) We want the operation on M / N given by

$$
\begin{array}{ccc}
M / N \times M / N & \rightarrow & M / N \\
\left(m_{1}+N, m_{2}+N\right) & \mapsto & \left(m_{1}+m_{2}\right)+N
\end{array}
$$

to be well defined, i.e. a function.
Let $\left(m_{1}+N, m_{2}+N\right),\left(m_{3}+N, m_{4}+N\right) \in M / N \times M / N$ such that $\left(m_{1}+\right.$ $\left.N, m_{2}+N\right)=\left(m_{3}+N, m_{4}+N\right)$.
Then $m_{1}+N=m_{3}+N$ and $m_{2}+N=m_{4}+N$.
To show: $\left(m_{1}+m_{2}\right)+N=\left(m_{3}+m_{4}\right)+N$.
To show: (aa) $\left(m_{1}+m_{2}\right)+N \subseteq\left(m_{3}+m_{4}\right)+N$.

$$
\text { (ab) }\left(m_{3}+m_{4}\right)+N \subseteq\left(m_{1}+m_{2}\right)+N \text {. }
$$

(aa) Since $m_{1}+N=m_{3}+N$ then $m_{1}=m_{1}+0 \in m_{3}+N$
So there exists $k_{1} \in N$ such that $m_{1}=m_{3}+k_{1}$.
Similarly there exists $k_{2} \in N$ such that $m_{2}=m_{4}+k_{2}$.
Let $t \in\left(m_{1}+m_{2}\right)+N$.
Then there exists $k \in N$ such that $t=m_{1}+m_{2}+k$ for some $k \in N$.
Since addition is commutative then

$$
\begin{aligned}
t & =m_{1}+m_{2}+k \\
& =m_{3}+k_{1}+m_{4}+k_{2}+k \\
& =m_{3}+m_{4}+k_{1}+k_{2}+k .
\end{aligned}
$$

So $t=\left(m_{3}+m_{4}\right)+\left(k_{1}+k_{2}+k\right) \in m_{3}+m_{4}+N$.
So $\left(m_{1}+m_{2}\right)+N \subseteq\left(m_{3}+m_{4}\right)+N$.
(ab) Since $m_{1}+N=m_{3}+N$ then there exists $k_{1} \in N$ such that $m_{1}+k_{1}=m_{3}$.
Since $m_{2}+N=m_{4}+N$ then there exists $k_{2} \in N$ such that $m_{2}+k_{2}=m_{4}$.
Let $t \in\left(m_{3}+m_{4}\right)+N$.
Then there exists $k \in N$ such that $t=m_{3}+m_{4}+k$.
So

$$
\begin{aligned}
t & =m_{3}+m_{4}+k \\
& =m_{1}+k_{1}+m_{2}+k_{2}+k \\
& =m_{1}+m_{2}+k_{1}+k_{2}+k,
\end{aligned}
$$

since addition is commutative.
So $t=\left(m_{1}+m_{2}\right)+\left(k_{1}+k_{2}+k\right) \in\left(m_{1}+m_{2}\right)+N$.
So $\left(m_{3}+m_{4}\right)+N \subseteq\left(m_{1}+m_{2}\right)+N$.
So $\left(m_{1}+m_{2}\right)+N=\left(m_{3}+m_{4}\right)+N$.

So the operation given by $\left(m_{1}+N\right)+\left(m_{3}+N\right)=\left(m_{1}+m_{3}\right)+N$ is a well defined operation on M / N.
(b) We want the operation given by

$$
\begin{array}{ccc}
R \times M / N & \rightarrow & M / N \\
(r, m+N) & \mapsto & r m+N
\end{array}
$$

to be well defined, i.e. a function.
Let $\left(r_{1}, m_{1}+N\right),\left(r_{2}, m_{2}+N\right) \in(R \times M / N)$ such that $\left(r_{1}, m_{1}+N\right)=\left(r_{2}, m_{2}+\right.$ $N)$.
Then $r_{1}=r_{2}$ and $m_{1}+N=m_{2}+N$.
To show: $r_{1} m_{1}+N=r_{2} m_{2}+N$.
To show: (ba) $r_{1} m_{1}+N \subseteq r_{2} m_{2}+N$.
(bb) $r_{2} m_{2}+N \subseteq r_{1} m_{1}+N$.
(ba) Since $m_{1}+N=m_{2}+N$ then there exists $n_{2} \in N$ such that $m_{1}=m_{2}+n_{2}$. Let $k \in r_{1} m_{1}+N$.
Then there exists $n \in N$ such that $k=r_{1} m_{1}+n$.
So

$$
\begin{aligned}
k & =r_{1} m_{1}+n \\
& =r_{2}\left(m_{2}+n_{2}\right)+n \\
& =r_{2} m_{2}+r_{2} n_{2}+n .
\end{aligned}
$$

Since N is a submodule then $r_{2} n_{2} \in N$ and $r_{2} n_{2}+n \in N$.
So $k=r_{2} m_{2}+r_{2} n_{2}+n \in r_{2} m_{2}+N$.
So $r_{1} m_{1}+N \subseteq r_{2} m_{2}+N$.
(bb) Since $m_{1}+N=m_{2}+N$ then there exists $n_{1} \in N$ such that $m_{2}=m_{1}+n_{1}$.
Let $k \in r_{2} m_{2}+N$.
Then there exists $n \in N$ such that $k=r_{2} m_{2}+n$. So

$$
\begin{aligned}
k & =r_{2} m_{2}+n \\
& =r_{1}\left(m_{1}+n_{1}\right)+n \\
& =r_{1} m_{1}+r_{1} n_{1}+n .
\end{aligned}
$$

Since N is a submodule then $r_{1} n_{1} \in N$ and $r_{1} n_{1}+n \in N$.
So $k=r_{1} m_{1}+r_{1} n_{1}+n \in r_{1} m_{1}+N$.
So $r_{2} m_{2}+N \subseteq r_{1} m_{1}+N$.
So $r_{1} m_{1}+N=r_{2} m_{2}+N$.
So the operation is well defined.
(c) By the associativity of addition in M and the definition of the operation in M / N, if $m_{1}+N, m_{2}+N, m_{3}+N \in M / N$ then

$$
\begin{aligned}
\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right)+\left(m_{3}+N\right) & =\left(\left(m_{1}+m_{2}\right)+N\right)+\left(m_{3}+N\right) \\
& =\left(\left(m_{1}+m_{2}\right)+m_{3}\right)+N \\
& =\left(m_{1}+\left(m_{2}+m_{3}\right)\right)+N \\
& =\left(m_{1}+N\right)+\left(\left(m_{2}+m_{3}\right)+N\right) \\
& =\left(m_{1}+N\right)+\left(\left(m_{2}+N\right)+\left(m_{3}+N\right)\right) .
\end{aligned}
$$

(d) By the commutativity of addition in M and the definition of the operation in M / N, if $m_{1}+N, m_{2}+N \in M / N$ then

$$
\begin{aligned}
\left(m_{1}+N\right)+\left(m_{2}+N\right) & =\left(m_{1}+m_{2}\right)+N \\
& =\left(m_{2}+m_{1}\right)+N \\
& =\left(m_{2}+N\right)+\left(m_{1}+N\right) .
\end{aligned}
$$

(e) The $\operatorname{coset} N=0+N$ is the zero in M / N since If $m+N \in M / N$ then

$$
\begin{aligned}
N+(m+N) & =(0+m)+N \\
& =m+N \\
& =(m+0)+N=(m+N)+N
\end{aligned}
$$

(f) If $m+N \in M / N$ then

$$
\begin{aligned}
(m+N)+(-m+N) & =m+(-m)+N \\
& =0+N \\
& =N \\
& =(-m+m)+N \\
& =(-m+N)+(m+N)
\end{aligned}
$$

So the additive inverse of $m+N$ is $(-m)+N$.
(g) Assume $r_{1}, r_{2} \in R$ and $m+N \in M / N$.

Then, by definition of the operation,

$$
\begin{aligned}
r_{1}\left(r_{2}(m+N)\right) & =r_{1}\left(r_{2} m+N\right) \\
& =r_{1}\left(r_{2} m\right)+N \\
& =\left(r_{1} r_{2}\right) m+N \\
& =\left(r_{1} r_{2}\right)(m+N) .
\end{aligned}
$$

(h) Assume $m+N \in M / N$.

Then, by definition of the operation,

$$
\begin{aligned}
1(m+N) & =(1 m)+N \\
& =m+N
\end{aligned}
$$

(i) Assume $r \in R$ and $m_{1}+N, m_{2}+N \in M / N$.

Then

$$
\begin{aligned}
r\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right) & =r\left(\left(m_{1}+m_{2}\right)+N\right) \\
& =r\left(m_{1}+m_{2}\right)+N \\
& =\left(r m_{1}+r m_{2}\right)+N \\
& =\left(r m_{1}+N\right)+\left(r m_{2}+N\right) \\
& =r\left(m_{1}+N\right)+r\left(m_{2}+N\right) .
\end{aligned}
$$

(j) Assume $r_{1}, r_{2} \in R$ and $m+N \in M / N$.

Then

$$
\begin{aligned}
\left(r_{1}+r_{2}\right)(m+N) & =\left(\left(r_{1}+r_{2}\right) m\right)+N \\
& =\left(r_{1} m+r_{2} m\right)+N \\
& =\left(r_{1} m+N\right)+\left(r_{2} m+N\right) \\
& =r_{1}(m+N)+r_{2}(m+N) .
\end{aligned}
$$

So M / N is a left R-module.
\Longleftarrow : Assume N is a subgroup of M and (M / N) is a left R-module with action given by $r(m+N)=r m+N$.
To show: N is a submodule of M.
To show: If $r \in R$ and $n \in N$ then $r n \in N$.
First we show: If $n \in N$ then $n+N=N$.
To show: (a) $n+N \subseteq N$.
(b) $N \subseteq n+N$.
(a) Let $k \in n+N$.

So there exists $n_{1} \in N$ such that $k=n+n_{1}$.
Since N is a subgroup, $k=n+n_{1} \in N$.
So $n+N \subseteq N$.
(b) Let $k \in N$.

Since $k-n \in N$ then $k=n+(k-n) \in n+N$.
So $N \subseteq n+N$.
Now assume $r \in R$ and $n \in N$.
Then, by definition of the R-action on M / N,

$$
\begin{aligned}
r n+N & =r(n+N) \\
& =r(0+N) \\
& =r \cdot 0+N \\
& =0+N \\
& =N .
\end{aligned}
$$

So $r n=r n+0 \in N$.
So N is a submodule of M.

Proposition R.6.3. - Let $f: M \rightarrow N$ be an R-module homomorphism. Then
(a) $\operatorname{ker} f$ is a submodule of M.
(b) im f is a submodule of N.

Proof. -
(a) By condition (a) in the definition of R-module homomorphism, f is a group homomorphism.
By Proposition 1.1.13 (a)REFERENCE FIX THIS, $\operatorname{ker} f$ is a subgroup of M. To show: If $r \in R$ and $k \in \operatorname{ker} f$ then $r k \in \operatorname{ker} f$.
Assume $r \in R$ and $k \in \operatorname{ker} f$.
Then, by the definition of R-module homomorphism,

$$
f(r k)=r f(k)=r \cdot 0=0 .
$$

So $r k \in \operatorname{ker} f$.
So $\operatorname{ker} f$ is a submodule of M.
(b) By condition (a) in the definition of R-module homomorphism, f is a group homomorphism.
By Proposition 1.1.13 (b)REFERENCE FIX THIS, $\operatorname{im} f$ is a subgroup of N.
To show: If $r \in R$ and $a \in \operatorname{im} f$ then $r a \in \operatorname{im} f$.
Assume $r \in R$ and $a \in \operatorname{im} f$.
Then there exists $m \in M$ such that $a=f(m)$.
By the definition of R-module homomorphism,

$$
r a=r f(m)=f(r m) .
$$

So $r a \in \operatorname{im} f$.
So $\operatorname{im} f$ is a submodule of N.
Proposition R.6.4. - Let $f: M \rightarrow N$ be an R-module homomorphism. Let 0_{M} be the zero in M. Then
(a) $\operatorname{ker} f=\left(0_{M}\right)$ if and only if f is injective.
(b) $\operatorname{im} f=N$ if and only if f is surjective.

Proof. - Let 0_{M} and 0_{N} be the zeros in M and N respectively.
(a) \Longrightarrow : Assume ker $f=\left\{0_{M}\right\}$.

To show: If $f\left(m_{1}\right)=f\left(m_{2}\right)$ then $m_{1}=m_{2}$.
Assume $f\left(m_{1}\right)=f\left(m_{2}\right)$.
Then, by the fact that f is a homomorphism,

$$
0_{N}=f\left(m_{1}\right)-f\left(m_{2}\right)=f\left(m_{1}-m_{2}\right)
$$

So $m_{1}-m_{2} \in \operatorname{ker} f$.
Since ker $f=\left\{0_{M}\right\}$ then $m_{1}-m_{2}=0_{M}$.
So $m_{1}=m_{2}$.
So f is injective.
\Longleftarrow : Assume f is injective.
To show: (aa) $\left\{0_{M}\right\} \subseteq \operatorname{ker} f$.
(ab) $\operatorname{ker} f \subseteq\left\{0_{M}\right\}$.
(aa) Since $f\left(0_{M}\right)=0_{N}$ then $0_{M} \in \operatorname{ker} f$.
So $\left\{0_{M}\right\} \subseteq \operatorname{ker} f$.
(ab) Let $k \in \operatorname{ker} f$.
Then $f(k)=0_{N}$.
So $f(k)=f\left(0_{M}\right)$.
Thus, since f is injective then $k=0_{M}$.
So ker $f \subseteq\left(0_{M}\right)$.
So ker $f=\left(0_{M}\right)$.
(b) \Longrightarrow : Assume $\operatorname{im} f=N$.

To show: If $n \in N$ then there exists $m \in M$ such that $f(m)=n$.
Assume $n \in N$.
Then $n \in \operatorname{im} f$.
So there exists $m \in M$ such that $f(m)=n$.
So f is surjective.
\Longleftarrow : Assume f is surjective.
To show: (ba) $\operatorname{im} f \subseteq N$.
(bb) $N \subseteq \operatorname{im} f$.
(ba) Let $x \in \operatorname{im} f$.
Then there exists $m \in M$ such that $x=f(m)$.
By the definition of $f, f(m) \in N$.
So $x \in N$.
So $\operatorname{im} f \subseteq N$.
(bb) Assume $x \in N$.
Since f is surjective there exists $m \in M$ such that $f(m)=x$.
So $x \in \operatorname{im} f$.
So $N \subseteq \operatorname{im} f$.
So $\operatorname{im} f=N$.

Theorem R.6.5. -

(a) Let $f: M \rightarrow N$ be an R-module homomorphism and let $K=\operatorname{ker} f$. Define

$$
\begin{array}{cccc}
\hat{f}: & M / \operatorname{ker} f & \rightarrow & N \\
m+K & \mapsto & f(m) .
\end{array}
$$

Then \hat{f} is a well defined injective R-module homomorphism.
(b) Let $f: M \rightarrow N$ be an R-module homomorphism and define

$$
\begin{aligned}
f^{\prime}: & M
\end{aligned}>\operatorname{imf} .
$$

Then f^{\prime} is a well defined surjective R-module homomorphism.
(c) If $f: M \rightarrow N$ is an R-module homomorphism, then

$$
M / \operatorname{ker} f \simeq \operatorname{im} f
$$

where the isomorphism is an R-module isomorphism.
Proof. -
(a) To show: (aa) \hat{f} is well defined.
(ab) \hat{f} is injective.
(ac) \hat{f} is an R-module homomorphism.
(aa) To show: (aa) If $m \in M$ then $\hat{f}(m+K) \in N$.
(aab) If $m_{1}+K=m_{2}+K \in M / K$ then $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$.
(aaa) Assume $m \in M$.
$\hat{f}(m+K)=f(m)$ and $f(m) \in N$, by the definition of \hat{f} and f.
(aab) Assume $m_{1}+K=m_{2}+K$.
Then there exists $k \in K$ such that $m_{1}=m_{2}+k$.
To show: $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$, i.e.,
To show: $f\left(m_{1}\right)=f\left(m_{2}\right)$.
Since $k \in \operatorname{ker} f$ then $f(k)=0$ and

$$
\begin{aligned}
& f\left(m_{1}\right)=f\left(m_{2}+k\right)=f\left(m_{2}\right)+f(k)=f\left(m_{2}\right)+0=f\left(m_{2}\right) . \\
& \text { So } \hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right) .
\end{aligned}
$$

So \hat{f} is well defined.
(ab) To show: If $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$ then $m_{1}+K=m_{2}+K$.
Assume $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$.
Then $f\left(m_{1}\right)=f\left(m_{2}\right)$.
So $f\left(m_{1}\right)-f\left(m_{2}\right)=0$.

So $f\left(m_{1}-m_{2}\right)=0$.
So $m_{1}-m_{2} \in \operatorname{ker} f$.
So there exists $k \in \operatorname{ker} f$ such that $m_{1}-m_{2}=k$.
So there exists $k \in \operatorname{ker} f$ such that $m_{1}=m_{2}+k$.
To show: (aba) $m_{1}+K \subseteq m_{2}+K$.
(abb) $m_{2}+K \subseteq m_{1}+K$.
(aba) Let $m \in m_{1}+K$.
Then there exists $k_{1} \in K$ such that $m=m_{1}+k_{1}$.
So $m=m_{2}+k+k_{1} \in m_{2}+K$, since $k+k_{1} \in K$.
So $m_{1}+K \subseteq m_{2}+K$.
(abb) Let $m \in m_{2}+K$.
Then there exists $k_{2} \in K$ such that $m=m_{2}+k_{2}$,
So $m=m_{1}-k+k_{2} \in m_{1}+K$ since $-k+k_{2} \in K$.
So $m_{2}+K \subseteq m_{1}+K$.
So $m_{1}+K=m_{2}+K$.
So \hat{f} is injective.
(ac) To show: (aca)If $m_{1}+K, m_{2}+K \in M / K$ then $\hat{f}\left(m_{1}+K\right)+\hat{f}\left(m_{2}+K\right)=$ $\hat{f}\left(\left(m_{1}+K\right)+\left(m_{2}+K\right)\right)$.
(acb) If $r \in R$ and $m+K \in M / K$ then $\hat{f}(r(m+K))=r \hat{f}(m+K)$.
(aca) Let $m_{1}+K, m_{2}+K \in M / K$.
Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}\left(m_{1}+K\right)+\hat{f}\left(m_{2}+K\right) & =f\left(m_{1}\right)+f\left(m_{2}\right) \\
& =f\left(m_{1}+m_{2}\right) \\
& =\hat{f}\left(\left(m_{1}+m_{2}\right)+K\right) \\
& =\hat{f}\left(\left(m_{1}+K\right)+\left(m_{2}+K\right)\right) .
\end{aligned}
$$

(acb) Let $r \in R$ and $m+K \in M / K$.
Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}(r(m+K)) & =\hat{f}(r m+K) \\
& =f(r m) \\
& =r f(m) \\
& =r \hat{f}(m+K) .
\end{aligned}
$$

So \hat{f} is an R-module homomorphism.
So \hat{f} is a well defined injective R-module homomorphism.
(b) To show: (ba) f^{\prime} is well defined.
(bb) f^{\prime} is surjective.
(bc) f^{\prime} is an R-module homomorphism.
(ba) and (bb) are proved in Ex. 2.2.3 a), Part I. YIKES FIX THIS
(bc) To show: (bca) If $m_{1}, m_{2} \in M$ then $f^{\prime}\left(m_{1}+m_{2}\right)=f^{\prime}\left(m_{1}\right)+f^{\prime}\left(m_{2}\right)$.
(bcb) If $r \in R$ and $m \in M$ then $f^{\prime}(r m)=r f^{\prime}(m)$.
(bca) Let $m_{1}, m_{2} \in M$.
Then, since f is a homomorphism,

$$
f^{\prime}\left(m_{1}+m_{2}\right)=f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)=f^{\prime}\left(m_{1}\right)+f^{\prime}\left(m_{2}\right) .
$$

(bcb) Let $m_{1}, m_{2} \in M$.

Then, since f is an R-module homomorphism,

$$
f^{\prime}(r m)=f(r m)=r f(m)=r f^{\prime}(m) .
$$

So f^{\prime} is an R-module homomorphism.
So f^{\prime} is a well defined surjective R-module homomorphism.
(c) Let $K=\operatorname{ker} f$.

By (a), the function

$$
\begin{array}{lccc}
\hat{f}: & M / K & \rightarrow & N \\
m+K & \mapsto & f(m)
\end{array}
$$

is a well defined injective R-module homomorphism.
By (b), the function

$$
\begin{aligned}
\hat{f}^{\prime}: \quad M / K & \rightarrow \operatorname{im} \hat{f} \\
m+K & \mapsto \hat{f}(m+K)=f(m)
\end{aligned}
$$

is a well defined surjective R-module homomorphism.
To show: (ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
(cb) \hat{f}^{\prime} is injective.
(ca) To show: (caa) im $\hat{f} \subseteq \operatorname{im} f$.

$$
(\mathrm{cab}) \operatorname{im}_{\hat{\hat{c}}} f \subseteq \operatorname{im} \hat{f}
$$

(caa) Let $n \in \operatorname{im} \hat{f}$.
Then there is some $m+K \in M / K$ such that $\hat{f}(m+K)=n$.
Let $m^{\prime} \in m+K$.
Then there exists $k \in K$ such that $m^{\prime}=m+k$.
Then, since f is a homomorphism and $f(k)=0$,

$$
\begin{aligned}
f\left(m^{\prime}\right) & =f(m+k) \\
& =f(m)+f(k) \\
& =f(m) \\
& =\hat{f}(m+k) \\
& =n .
\end{aligned}
$$

So $n \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
(cab) Let $n \in \operatorname{im} f$.
Then there exists $m \in M$ such that $f(m)=n$.
So $\hat{f}(m+K)=f(m)=n$.
So $n \in \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} f=\operatorname{im} \hat{f}$.
(cb) To show: If $\hat{f}^{\prime}\left(m_{1}+K\right)=\hat{f}^{\prime}\left(m_{2}+K\right)$ then $m_{1}+K=m_{2}+K$.
Assume $\hat{f}^{\prime}\left(m_{1}+K\right)=\hat{f}^{\prime}\left(m_{2}+K\right)$.
Then $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$.
Since \hat{f} is injective then $m_{1}+K=m_{2}+K$.
So \hat{f}^{\prime} is injective.
Thus

$$
\begin{aligned}
\hat{f}^{\prime}: & M / K
\end{aligned} \rightarrow \operatorname{im} f
$$

is a well defined bijective R-module homomorphism.

