R.6. Proofs: Modules

Proposition R.6.1. — Let M be a left R-module and let N be a subgroup of M. Then the cosets of N in M partition M.

Proof. — To show: (a) If $m \in M$ then there exists $m' \in M$ such that $m \in m' + N$. (b) If $(m_1 + N) \cap (m_2 + N) \neq \emptyset$ then $m_1 + N = m_2 + N$. (a) Let $m \in M$. Since $0 \in N$ then $m = m + 0 \in m + N$. So $m \in m + N$. (b) Assume $(m_1 + N) \cap (m_2 + N) \neq \emptyset$. To show: (ba) $m_1 + N \subseteq m_2 + N$. (bb) $m_2 + N \subseteq m_1 + N$. Let $a \in (m_1 + N) \cap (m_2 + N)$. So there exist $n_1, n_2 \in \mathbb{N}$ such that $a = m_1 + n_1$ and $a = m_2 + n_2$. Then $m_1 = m_1 + n_1 - n_1 = a - n_1 = m_2 + n_2 - n_1$ and $m_2 = m_2 + n_2 - n_2 = a - n_2 = m_1 + n_1 - n_2.$ (ba) Let $m \in m_1 + N$. Then there exists $n \in N$ such that $m = m_1 + n$. Then $m = m_1 + n = m_2 + n_2 - n_1 + n \in m_2 + N$ since $n_2 - n_1 + n \in N$. So $m_1 + N \subseteq m_2 + N$. (bb) Let $m \in m_2 + N$. Then there exists $n \in N$ such that $m = m_2 + n$. Since $n_1 - n_2 + n \in N$ then $m = m_2 + n = m_1 + n_1 - n_2 + n \in m_1 + N$ So $m_2 + N \subseteq m_1 + N$. So $m_1 + N = m_2 + N$. So the cosets of N in M partition M.

Theorem R.6.2. — Let N be a subgroup of a left R-module M. Then N is a submodule of M if and only if M/N with the operations given by

$$(m_1 + N) + (m_2 + N) = (m_1 + m_2) + N$$
, and
 $r(m_1 + N) = rm_1 + N$,

is a left R-module.

Proof. —

 $\implies: \text{Assume } N \text{ is a submodule of } M.$ To show: (a) $(m_1 + N) + (m_2 + N) = (m_1 + m_2) + N$ is a well defined operation on M/N.(b) The operation given by r(m + N) = rm + N is well defined.

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

(c) If $m_1 + N, m_2 + N, m_3 + N \in M/N$ then $((m_1 + N) + (m_2 + N)) +$ $(m_3 + N) = (m_1 + N) + ((m_2 + N) + (m_3 + N)).$ (d) If $m_1 + N, m_2 + N \in M/N$ then $(m_1 + N) + (m_2 + N) = (m_2 + N) = (m_2 + N) + (m_2 + N) = (m_2 + N) = (m_2 + N) + (m_2 + N) = (m_2 + N) = (m_2 + N) + (m_2 + N) = (m_$ $(m_1 + N).$ (e) 0 + N = N is the zero in M/N. (f) -m + N is the additive inverse of m + N. (g) If $r_1, r_2 \in R$ and $m + N \in M/N$, then $r_1(r_2(m+N)) = (r_1r_2)(m+N)$. (h) If $m + N \in M/N$ then 1(m + N) = m + N. (i) If $r \in R$ and $m_1 + N, m_2 + N \in M/N$ then $r((m_1 + N) + (m_2 + N)) =$ $r(m_1 + N) + r(m_2 + N).$ (j) If $r_1, r_2 \in R$ and $m + N \in M/N$, then $(r_1 + r_2)(m + N) = r_1(m + N) + r_2(m + N) + r_2(m + N) = r_1(m + N) + r_2(m + N) + r_2(m + N) = r_1(m + N) + r_2(m + N) = r_2(m + N) = r_2(m + N) + r_2(m + N) = r$ $r_2(m+N).$ (a) We want the operation on M/N given by $\begin{array}{rccc} M/N \times M/N & \rightarrow & M/N \\ (m_1 + N, m_2 + N) & \mapsto & (m_1 + m_2) + N \end{array}$ to be well defined, i.e. a function. Let $(m_1 + N, m_2 + N), (m_3 + N, m_4 + N) \in M/N \times M/N$ such that $(m_1 + N, m_2 + N), (m_3 + N, m_4 + N) \in M/N \times M/N$ $N, m_2 + N) = (m_3 + N, m_4 + N).$ Then $m_1 + N = m_3 + N$ and $m_2 + N = m_4 + N$. To show: $(m_1 + m_2) + N = (m_3 + m_4) + N$. To show: (aa) $(m_1 + m_2) + N \subseteq (m_3 + m_4) + N$. (ab) $(m_3 + m_4) + N \subseteq (m_1 + m_2) + N$. (aa) Since $m_1 + N = m_3 + N$ then $m_1 = m_1 + 0 \in m_3 + N$ So there exists $k_1 \in N$ such that $m_1 = m_3 + k_1$. Similarly there exists $k_2 \in N$ such that $m_2 = m_4 + k_2$. Let $t \in (m_1 + m_2) + N$. Then there exists $k \in N$ such that $t = m_1 + m_2 + k$ for some $k \in N$. Since addition is commutative then $t = m_1 + m_2 + k$ $= m_3 + k_1 + m_4 + k_2 + k_3$ $= m_3 + m_4 + k_1 + k_2 + k.$ So $t = (m_3 + m_4) + (k_1 + k_2 + k) \in m_3 + m_4 + N$. So $(m_1 + m_2) + N \subseteq (m_3 + m_4) + N$. (ab) Since $m_1 + N = m_3 + N$ then there exists $k_1 \in N$ such that $m_1 + k_1 = m_3$. Since $m_2 + N = m_4 + N$ then there exists $k_2 \in N$ such that $m_2 + k_2 = m_4$. Let $t \in (m_3 + m_4) + N$. Then there exists $k \in N$ such that $t = m_3 + m_4 + k$. So

$$t = m_3 + m_4 + k$$

= $m_1 + k_1 + m_2 + k_2 + k$
= $m_1 + m_2 + k_1 + k_2 + k$,

since addition is commutative.

So $t = (m_1 + m_2) + (k_1 + k_2 + k) \in (m_1 + m_2) + N$. So $(m_3 + m_4) + N \subseteq (m_1 + m_2) + N$. So $(m_1 + m_2) + N = (m_3 + m_4) + N$. So the operation given by $(m_1 + N) + (m_3 + N) = (m_1 + m_3) + N$ is a well defined operation on M/N.

(b) We want the operation given by

$$\begin{array}{rccc} R \times M/N & \to & M/N \\ (r, m+N) & \mapsto & rm+N \end{array}$$

to be well defined, i.e. a function. Let $(r_1, m_1 + N)$, $(r_2, m_2 + N) \in (R \times M/N)$ such that $(r_1, m_1 + N) = (r_2, m_2 + N)$. Then $r_1 = r_2$ and $m_1 + N = m_2 + N$. To show: $r_1m_1 + N = r_2m_2 + N$. To show: (ba) $r_1m_1 + N \subseteq r_2m_2 + N$. (bb) $r_2m_2 + N \subseteq r_1m_1 + N$. (ba) Since $m_1 + N = m_2 + N$ then there exists $n_2 \in N$ such that $m_1 = m_2 + n_2$. Let $k \in r_1m_1 + N$. Then there exists $n \in N$ such that $k = r_1m_1 + n$. So

$$k = r_1 m_1 + n$$

= $r_2(m_2 + n_2) + n$
= $r_2 m_2 + r_2 n_2 + n$

Since N is a submodule then $r_2n_2 \in N$ and $r_2n_2 + n \in N$. So $k = r_2m_2 + r_2n_2 + n \in r_2m_2 + N$. So $r_1m_1 + N \subseteq r_2m_2 + N$.

(bb) Since $m_1 + N = m_2 + N$ then there exists $n_1 \in N$ such that $m_2 = m_1 + n_1$. Let $k \in r_2m_2 + N$.

Then there exists $n \in N$ such that $k = r_2m_2 + n$. So

$$k = r_2 m_2 + n$$

= $r_1(m_1 + n_1) + n$
= $r_1 m_1 + r_1 n_1 + n$

Since N is a submodule then $r_1n_1 \in N$ and $r_1n_1 + n \in N$. So $k = r_1m_1 + r_1n_1 + n \in r_1m_1 + N$. So $r_2m_2 + N \subseteq r_1m_1 + N$. So $r_1m_1 + N = r_2m_2 + N$.

So the operation is well defined.

(c) By the associativity of addition in M and the definition of the operation in M/N, if $m_1 + N, m_2 + N, m_3 + N \in M/N$ then

$$((m_1 + N) + (m_2 + N)) + (m_3 + N) = ((m_1 + m_2) + N) + (m_3 + N)$$
$$= ((m_1 + m_2) + m_3) + N$$
$$= (m_1 + (m_2 + m_3)) + N$$
$$= (m_1 + N) + ((m_2 + m_3) + N)$$
$$= (m_1 + N) + ((m_2 + N) + (m_3 + N))$$

(d) By the commutativity of addition in M and the definition of the operation in M/N, if $m_1 + N, m_2 + N \in M/N$ then

$$(m_1 + N) + (m_2 + N) = (m_1 + m_2) + N$$

= $(m_2 + m_1) + N$
= $(m_2 + N) + (m_1 + N).$

(e) The coset N = 0 + N is the zero in M/N since If $m + N \in M/N$ then

$$N + (m + N) = (0 + m) + N$$

= m + N
= (m + 0) + N = (m + N) + N

(f) If $m + N \in M/N$ then

$$(m + N) + (-m + N) = m + (-m) + N$$

= 0 + N
= N
= $(-m + m) + N$
= $(-m + N) + (m + N)$

So the additive inverse of m + N is (-m) + N.

(g) Assume $r_1, r_2 \in R$ and $m + N \in M/N$. Then, by definition of the operation,

$$r_1(r_2(m+N)) = r_1(r_2m+N) = r_1(r_2m) + N = (r_1r_2)m + N = (r_1r_2)(m+N).$$

(h) Assume $m + N \in M/N$. Then, by definition of the operation,

$$1(m+N) = (1m) + N$$
$$= m + N.$$

(i) Assume $r \in R$ and $m_1 + N, m_2 + N \in M/N$. Then

$$r((m_1 + N) + (m_2 + N)) = r((m_1 + m_2) + N)$$

= $r(m_1 + m_2) + N$
= $(rm_1 + rm_2) + N$
= $(rm_1 + N) + (rm_2 + N)$
= $r(m_1 + N) + r(m_2 + N)$.

(j) Assume $r_1, r_2 \in R$ and $m + N \in M/N$.

Then

$$(r_1 + r_2)(m + N) = ((r_1 + r_2)m) + N$$

= $(r_1m + r_2m) + N$
= $(r_1m + N) + (r_2m + N)$
= $r_1(m + N) + r_2(m + N).$

So M/N is a left *R*-module. \Leftarrow : Assume N is a subgroup of M and (M/N) is a left R-module with action given by r(m+N) = rm + N. To show: N is a submodule of M. To show: If $r \in R$ and $n \in N$ then $rn \in N$. First we show: If $n \in N$ then n + N = N. To show: (a) $n + N \subset N$. (b) $N \subseteq n + N$. (a) Let $k \in n + N$. So there exists $n_1 \in N$ such that $k = n + n_1$. Since N is a subgroup, $k = n + n_1 \in N$. So $n + N \subseteq N$. (b) Let $k \in N$. Since $k - n \in N$ then $k = n + (k - n) \in n + N$. So $N \subseteq n + N$. Now assume $r \in R$ and $n \in N$. Then, by definition of the *R*-action on M/N, rn + N = r(n + N)= r(0 + N) $= r \cdot 0 + N$ = 0 + N= N.

So $rn = rn + 0 \in N$. So N is a submodule of M.

Proposition R.6.3. — Let $f: M \to N$ be an R-module homomorphism. Then

(a) ker f is a submodule of M.

(b) $\inf f$ is a submodule of N.

Proof. —

(a) By condition (a) in the definition of R-module homomorphism, f is a group homomorphism.

By Proposition 1.1.13 (a)REFERENCE FIX THIS, ker f is a subgroup of M. To show: If $r \in R$ and $k \in \ker f$ then $rk \in \ker f$. Assume $r \in R$ and $k \in \ker f$. Then, by the definition of R-module homomorphism,

$$f(rk) = rf(k) = r \cdot 0 = 0.$$

So $rk \in \ker f$. So ker f is a submodule of M.

(b) By condition (a) in the definition of R-module homomorphism, f is a group homomorphism.

By Proposition 1.1.13 (b)REFERENCE FIX THIS, $\inf f$ is a subgroup of N. To show: If $r \in R$ and $a \in \inf f$ then $ra \in \inf f$. Assume $r \in R$ and $a \in \inf f$. Then there exists $m \in M$ such that a = f(m). By the definition of R-module homomorphism,

$$ra = rf(m) = f(rm).$$

So $ra \in imf$.

So $\operatorname{im} f$ is a submodule of N.

Proposition R.6.4. — Let $f: M \to N$ be an *R*-module homomorphism. Let 0_M be the zero in *M*. Then

(a) ker f = (0_M) if and only if f is injective.
(b) im f = N if and only if f is surjective.

Proof. — Let 0_M and 0_N be the zeros in M and N respectively.

(a) \implies : Assume ker $f = \{0_M\}$. To show: If $f(m_1) = f(m_2)$ then $m_1 = m_2$. Assume $f(m_1) = f(m_2)$. Then, by the fact that f is a homomorphism,

$$0_N = f(m_1) - f(m_2) = f(m_1 - m_2).$$

So $m_1 - m_2 \in \ker f$. Since $\ker f = \{0_M\}$ then $m_1 - m_2 = 0_M$. So $m_1 = m_2$. So f is injective.

(bb) $N \subseteq \operatorname{im} f$.

```
\Leftarrow: Assume f is injective.
    To show: (aa) \{0_M\} \subseteq \ker f.
                (ab) ker f \subseteq \{0_M\}.
     (aa) Since f(0_M) = 0_N then 0_M \in \ker f.
           So \{0_M\} \subseteq \ker f.
     (ab) Let k \in \ker f.
           Then f(k) = 0_N.
           So f(k) = f(0_M).
           Thus, since f is injective then k = 0_M.
           So ker f \subseteq (0_M).
    So ker f = (0_M).
(b) \implies: Assume \operatorname{im} f = N.
    To show: If n \in N then there exists m \in M such that f(m) = n.
    Assume n \in N.
    Then n \in \operatorname{im} f.
    So there exists m \in M such that f(m) = n.
    So f is surjective.
    \Leftarrow: Assume f is surjective.
    To show: (ba) \operatorname{im} f \subseteq N.
```

(ba) Let x ∈ imf. Then there exists m ∈ M such that x = f(m). By the definition of f, f(m) ∈ N. So x ∈ N. So imf ⊆ N.
(bb) Assume x ∈ N. Since f is surjective there exists m ∈ M such that f(m) = x. So x ∈ im f.

Theorem
$$R.6.5$$
. —

So $\operatorname{im} f = N$.

So $N \subseteq \operatorname{im} f$.

(a) Let $f: M \to N$ be an R-module homomorphism and let $K = \ker f$. Define

$$\hat{f} \colon M/\ker f \to N m+K \mapsto f(m).$$

Then \hat{f} is a well defined injective *R*-module homomorphism. (b) Let $f: M \to N$ be an *R*-module homomorphism and define

$$\begin{array}{rccc} f'\colon & M & \to & \inf f \\ & m & \mapsto & f(m). \end{array}$$

Then f' is a well defined surjective R-module homomorphism. (c) If $f: M \to N$ is an R-module homomorphism, then

 $M/\ker f \simeq \operatorname{im} f$

where the isomorphism is an R-module isomorphism.

Proof. —

(a) To show: (aa) \hat{f} is well defined. (ab) \hat{f} is injective. (ac) f is an *R*-module homomorphism. (aa) To show: (aa) If $m \in M$ then $f(m+K) \in N$. (aab) If $m_1 + K = m_2 + K \in M/K$ then $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. (aaa) Assume $m \in M$. $\hat{f}(m+K) = f(m)$ and $f(m) \in N$, by the definition of \hat{f} and f. (aab) Assume $m_1 + K = m_2 + K$. Then there exists $k \in K$ such that $m_1 = m_2 + k$. To show: $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$, i.e., To show: $f(m_1) = f(m_2)$. Since $k \in \ker f$ then f(k) = 0 and $f(m_1) = f(m_2 + k) = f(m_2) + f(k) = f(m_2) + 0 = f(m_2).$ So $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. So \hat{f} is well defined. (ab) To show: If $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$ then $m_1 + K = m_2 + K$. Assume $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. Then $f(m_1) = f(m_2)$. So $f(m_1) - f(m_2) = 0$.

So $f(m_1 - m_2) = 0$. So $m_1 - m_2 \in \ker f$. So there exists $k \in \ker f$ such that $m_1 - m_2 = k$. So there exists $k \in \ker f$ such that $m_1 = m_2 + k$. To show: (aba) $m_1 + K \subseteq m_2 + K$. (abb) $m_2 + K \subseteq m_1 + K$. (aba) Let $m \in m_1 + K$. Then there exists $k_1 \in K$ such that $m = m_1 + k_1$. So $m = m_2 + k + k_1 \in m_2 + K$, since $k + k_1 \in K$. So $m_1 + K \subseteq m_2 + K$. (abb) Let $m \in m_2 + K$. Then there exists $k_2 \in K$ such that $m = m_2 + k_2$, So $m = m_1 - k + k_2 \in m_1 + K$ since $-k + k_2 \in K$. So $m_2 + K \subseteq m_1 + K$. So $m_1 + K = m_2 + K$. So f is injective. (ac) To show: (aca) If $m_1 + K, m_2 + K \in M/K$ then $\hat{f}(m_1 + K) + \hat{f}(m_2 + K) =$ $f((m_1+K)+(m_2+K)).$ (acb) If $r \in R$ and $m + K \in M/K$ then $\hat{f}(r(m+K)) = r\hat{f}(m+K)$. (aca) Let $m_1 + K, m_2 + K \in M/K$. Since f is a homomorphism, $\hat{f}(m_1 + K) + \hat{f}(m_2 + K) = f(m_1) + f(m_2)$ $= f(m_1 + m_2)$ $=\hat{f}((m_1+m_2)+K)$ $= \hat{f}((m_1 + K) + (m_2 + K)).$ (acb) Let $r \in R$ and $m + K \in M/K$. Since f is a homomorphism, $\hat{f}(r(m+K)) = \hat{f}(rm+K)$ = f(rm)= rf(m) $= r\hat{f}(m+K).$

So \hat{f} is an *R*-module homomorphism.

So f is a well defined injective *R*-module homomorphism.

(b) To show: (ba) f' is well defined.

- (bb) f' is surjective.
- (bc) f' is an *R*-module homomorphism.
- (ba) and (bb) are proved in Ex. 2.2.3 a), Part I. YIKES FIX THIS
- (bc) To show: (bca) If $m_1, m_2 \in M$ then $f'(m_1 + m_2) = f'(m_1) + f'(m_2)$. (bcb) If $r \in R$ and $m \in M$ then f'(rm) = rf'(m).
 - (bca) Let $m_1, m_2 \in M$.

Then, since f is a homomorphism,

$$f'(m_1 + m_2) = f(m_1 + m_2) = f(m_1) + f(m_2) = f'(m_1) + f'(m_2).$$

(bcb) Let $m_1, m_2 \in M$.

Then, since f is an R-module homomorphism,

$$f'(rm) = f(rm) = rf(m) = rf'(m).$$

So f' is an R-module homomorphism.

So f' is a well defined surjective *R*-module homomorphism. (c) Let $K = \ker f$.

By (a), the function

$$\hat{f} \colon \begin{array}{ccc} M/K & \to & N \\ m+K & \mapsto & f(m) \end{array}$$

is a well defined injective $R\mbox{-}{\rm module}$ homomorphism. By (b), the function

$$\hat{f}': M/K \rightarrow \inf \hat{f}$$

 $m+K \mapsto \hat{f}(m+K) = f(m)$

is a well defined surjective R-module homomorphism.

To show: (ca) im
$$\hat{f} = \operatorname{im} f$$
.
(cb) \hat{f}' is injective.
(ca) To show: (caa) im $\hat{f} \subseteq \operatorname{im} f$.
(cab) im $f \subseteq \operatorname{im} \hat{f}$.
(caa) Let $n \in \operatorname{im} \hat{f}$.
Then there is some $m + K \in M/K$ such that $\hat{f}(m + K) = n$.
Let $m' \in m + K$.
Then there exists $k \in K$ such that $m' = m + k$.
Then there exists $k \in K$ such that $m' = m + k$.
Then, since f is a homomorphism and $f(k) = 0$,
 $f(m') = f(m + k)$
 $= f(m) + f(k)$
 $= f(m)$
 $= \hat{f}(m + k)$
 $= n$.
So $n \in \operatorname{im} f$.
So $\inf \hat{f} \subseteq \operatorname{im} f$.
(cab) Let $n \in \operatorname{im} f$.
Then there exists $m \in M$ such that $f(m) = n$.
So $\hat{f}(m + K) = f(m) = n$.
So $\hat{f}(m + K) = f(m) = n$.
So $\hat{m} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} f = \operatorname{im} \hat{f}$.
(cb) To show: If $\hat{f}'(m_1 + K) = \hat{f}'(m_2 + K)$ then $m_1 + K = m_2 + K$.
Assume $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$.
Since \hat{f} is injective then $m_1 + K = m_2 + K$.
So \hat{f}' is injective.
Thus
 \hat{f}' : $M/K \to \operatorname{im} f$
 $m + K \mapsto f(m)$

is a well defined bijective $R\operatorname{-module}$ homomorphism.