R.5. Proofs: Rings

Proposition R.5.1. - Let R be a ring and let I be an additive subgroup of R. Then the cosets of I in R partition R.

Proof. -
To show: (a) If $r \in R$ then there exists $r^{\prime} \in R$ such that $r \in r^{\prime}+I$.
(b) If $\left(r_{1}+I\right) \cap\left(r_{2}+I\right) \neq \emptyset$ then $r_{1}+I=r_{2}+I$.
(a) Let $r \in R$.

Then $r=r+0 \in r+I$, since $0 \in I$.
So $r \in r+I$.
(b) Assume $\left(r_{1}+I\right) \cap\left(r_{2}+I\right) \neq \emptyset$.

To show: (ba) $r_{1}+I \subseteq r_{2}+I$.
(bb) $r_{2}+I \subseteq r_{1}+I$.
Let $s \in\left(r_{1}+I\right) \cap\left(r_{2}+I\right)$.
Suppose $s=r_{1}+i_{1}$ and $s=r_{2}+i_{2}$ where $i_{1}, i_{2} \in I$.
Then

$$
\begin{aligned}
& r_{1}=r_{1}+i_{1}-i_{1}=s-i_{1}=r_{2}+i_{2}-i_{1} \quad \text { and } \\
& r_{2}=r_{2}+i_{2}-i_{2}=s-i_{2}=r_{1}+i_{1}-i_{2} .
\end{aligned}
$$

(ba) Let $r \in r_{1}+I$.
Then $r=r_{1}+i$ for some $i \in I$.
Then

$$
r=r_{1}+i=r_{2}+i_{2}-i_{1}+i \in r_{2}+I,
$$

since $i_{2}-i_{1}+i \in I$.
So $r_{1}+I \subseteq r_{2}+I$.
(bb) Let $r \in r_{2}+I$.
Then $r=r_{2}+i$ for some $i \in I$.
So

$$
r=r_{2}+i=r_{1}+i_{1}-i_{2}+i \in r_{1}+I
$$

since $i_{1}-i_{2}+i \in I$.
So $r_{2}+I \subseteq r_{1}+I$.
So $r_{1}+I=r_{2}+I$.
So the cosets of I in R partition R.
Proposition R.5.2. - Let I be an additive subgroup of a ring R. I is an ideal of R if and only if R / I with operations given by

$$
\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I \quad \text { and } \quad\left(r_{1}+I\right)\left(r_{2}+I\right)=r_{1} r_{2}+I
$$

is a ring.
Proof. -
\Longrightarrow : Assume I is an ideal of R.
To show: (a) $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I$ is a well defined operation on R / I.
(b) $\left(r_{1}+I\right)\left(r_{2}+I\right)=\left(r_{1} r_{2}\right)+I$ is a well defined operation on R / I.
(c) If $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$ then $\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right)+\left(r_{3}+I\right)=$

$$
\left(r_{1}+I\right)+\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right)
$$

(d) If $r_{1}+I, r_{2}+I \in R / I$ then $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{2}+I\right)+\left(r_{1}+I\right)$.

[^0](e) $0+I=I$ is the zero in R / I.
(f) $-r+I$ is the additive inverse of $r+I$.
(g) If $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$ then $\left(\left(r_{1}+I\right)\left(r_{2}+I\right)\right)\left(r_{3}+I\right)=$ $\left(r_{1}+I\right)\left(\left(r_{2}+I\right)\left(r_{3}+I\right)\right)$.
(h) $1+I$ is the identity in R / I.
(i) If $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$ then
\[

$$
\begin{aligned}
\left(r_{1}+I\right)\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right) & =\left(r_{1}+I\right)\left(r_{2}+I\right)+\left(r_{1}+I\right)\left(r_{3}+I\right) \quad \text { and } \\
\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right)\left(r_{1}+I\right) & =\left(r_{2}+I\right)\left(r_{1}+I\right)+\left(r_{3}+I\right)\left(r_{1}+I\right) .
\end{aligned}
$$
\]

(a) We want the operation on R / I given by

$$
\begin{array}{ccc}
R / I \times R / I & \rightarrow & R / I \\
(r+I, s+I) & \mapsto & (r+s)+I
\end{array}
$$

to be well defined, i.e. a function.
Let $\left(r_{1}+I, s_{1}+I\right),\left(r_{2}+I, s_{2}+I\right) \in R / I \times R / I$ such that $\left(r_{1}+I, s_{1}+I\right)=\left(r_{2}+I, s_{2}+I\right)$.
Then $r_{1}+I=r_{2}+I$ and $s_{1}+I=s_{2}+I$.
To show: $\left(r_{1}+s_{1}\right)+I=\left(r_{2}+s_{2}\right)+I$.
So we must show: (aa) $\left(r_{1}+s_{1}\right)+I \subseteq\left(r_{2}+s_{2}\right)+I$.
(ab) $\left(r_{2}+s_{2}\right)+I \subseteq\left(r_{1}+s_{1}\right)+I$.
(aa) Since $r_{1}+I=r_{2}+I$ then $r_{1}=r_{1}+0 \in r_{2}+I$
So there exists $k_{1} \in I$ such that $r_{1}=r_{2}+k_{1}$.
Similarly, there exists $k_{2} \in I$ such that $s_{1}=s_{2}+k_{2}$.
Let $t \in\left(r_{1}+s_{1}\right)+I$.
Then there exists $k \in I$ such that $t=r_{1}+s_{1}+k$.
So

$$
t=r_{1}+s_{1}+k=r_{2}+k_{1}+s_{2}+k_{2}+k=r_{2}+s_{2}+k_{1}+k_{2}+k,
$$

since addition is commutative.
So $t=\left(r_{2}+s_{2}\right)+\left(k_{1}+k_{2}+k\right) \in r_{2}+s_{2}+I$.
So $\left(r_{1}+s_{1}\right)+I \subseteq\left(r_{2}+s_{2}\right)+I$.
(ab) Since $r_{1}+I=r_{2}+I$ then there exists $k_{1} \in I$ such that $r_{1}+k_{1}=r_{2}$.
Since $s_{1}+I=s_{2}+I$ then there exists $k_{2} \in I$ such that $s_{1}+k_{2}=s_{2}$.
Let $t \in\left(r_{2}+s_{2}\right)+I$.
Then there exists $k \in I$ such that $t=r_{2}+s_{2}+k$.
So

$$
t=r_{2}+s_{2}+k=r_{1}+k_{1}+s_{1}+k_{2}+k=r_{1}+s_{1}+k_{1}+k_{2}+k,
$$

since addition is commutative.
So $t=\left(r_{1}+s_{1}\right)+\left(k_{1}+k_{2}+k\right) \in\left(r_{1}+s_{1}\right)+I$.
So $\left(r_{2}+s_{2}\right)+I \subseteq\left(r_{1}+s_{1}\right)+I$.
So $\left(r_{1}+s_{s}\right)+I=\left(r_{2}+s_{2}\right)+I$.
So the operation given by $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I$ is a well defined operation on R / I.
(b) We want the operation on R / I given by

$$
\begin{array}{ccc}
R / I \times R / I & \rightarrow & R / I \\
(r+I, s+I) & \mapsto & (r s)+I
\end{array}
$$

to be well defined, i.e. a function.
Let $\left(r_{1}+I, s_{1}+I\right),\left(r_{2}+I, s_{2}+I\right) \in R / I \times R / I$ such that $\left(r_{1}+I, s_{1}+I\right)=\left(r_{2}+I, s_{2}+I\right)$.

Then $r_{1}+I=r_{2}+I$ and $s_{2}+I=s_{2}+I$.
To show: $r_{1} s_{1}+I=r_{2} s_{2}+I$.
So we must show: (ba) $r_{1} s_{1}+I \subseteq r_{2} s_{2}+I$.
(bb) $r_{2} s_{2}+I \subseteq r_{1} s_{1}+I$.
(ba) Since $r_{1}+I=r_{2}+I$, there exists $k_{1} \in I$ such that $r_{1}=r_{2}+k_{1}$.
Since $s_{1}+I=s_{2}+I$, there exists $k_{2} \in I$ such that $s_{1}=s_{2}+k_{2}$.
Let $t \in r_{1} s_{1}+I$.
Then there exists $k \in I$ such that $t=r_{1} s_{1}+k$.
So

$$
t=r_{1} s_{1}+k=\left(r_{2}+k_{1}\right)\left(s_{2}+k_{2}\right)+k=r_{2} s_{2}+k_{1} s_{2}+r_{2} k_{2}+k_{1} k_{2}+k
$$

by using the distributive law.
$k_{1} s_{2}+r_{2} k_{2}+k_{1} k_{2}+k \in I$ by the definition of ideal.
So $t \in r_{2} s_{2}+I$.
So $r_{1} s_{1}+I \subseteq r_{2} s_{2}+I$.
(bb) Since $r_{1}+I=r_{2}+I$, there exists $k_{1} \in I$ such that $r_{1}+k_{1}=r_{2}$.
Since $s_{1}+I=s_{2}+I$, there exists $k_{2} \in I$ such that $s_{1}+k_{2}=s_{2}$.
Let $t \in r_{2} s_{2}+I$.
Then there exists $k \in I$ such that $t=r_{2} s_{2}+k$.
So

$$
t=r_{2} s_{2}+k=\left(r_{1}+k_{1}\right)\left(s_{1}+k_{2}\right)+k=r_{1} s_{1}+r_{1} k_{2}+k_{1} s_{1}+k_{1} k_{2}+k,
$$

by using the distributive law.
By the definition of ideal, $r_{1} k_{2}+k_{1} s_{1}+k_{1} k_{2}+k \in I$.
So $t \in r_{1} s_{1}+I$.
So $r_{2} s_{2}+I \subseteq r_{1} s_{1}+I$.
So $r_{1} s_{1}+I=r_{2} s_{2}+I$.
So the operation given by $(r+I)(s+I)=r s+I$ is a well defined operation on R / I.
(c) By the associativity of addition in R and the definition of the operation in R / I, if $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$ then

$$
\begin{aligned}
\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right)+\left(r_{3}+I\right) & =\left(\left(r_{1}+r_{2}\right)+I\right)+\left(r_{3}+I\right) \\
& =\left(\left(r_{1}+r_{2}\right)+r_{3}\right)+I \\
& =\left(r_{1}+\left(r_{2}+r_{3}\right)\right)+I \\
& =\left(r_{1}+I\right)+\left(\left(r_{2}+r_{3}\right)+I\right) \\
& =\left(r_{1}+I\right)+\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right)
\end{aligned}
$$

(d) By the commutativity of addition in R and the definition of the operation in R / I, if $r_{1}+I, r_{2}+I \in R / I$ then

$$
\begin{aligned}
\left(r_{1}+I\right)+\left(r_{2}+I\right) & =\left(r_{1}+r_{2}\right)+I \\
& =\left(r_{2}+r_{1}\right)+I \\
& =\left(r_{2}+I\right)+\left(r_{1}+I\right)
\end{aligned}
$$

(e) The coset $I=0+I$ is the zero in R / I since if $r+I \in R / I$ then

$$
\begin{aligned}
I+(r+I) & =(0+r)+I \\
& =r+I \\
& =(r+0)+I=(r+I)+I .
\end{aligned}
$$

(f) Given any coset $r+I$, its additive inverse is $(-r)+I$ since if $r+I \in R / I$ then

$$
\begin{aligned}
(r+I)+(-r+I) & =r+(-r)+I \\
& =0+I \\
& =I \\
& =(-r+r)+I \\
& =(-r+I)+(r+I)
\end{aligned}
$$

(g) By the associativity of multiplication in R and the definition of the operation in R / I, if $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$ then

$$
\begin{aligned}
\left(\left(r_{1}+I\right)\left(r_{2}+I\right)\right)\left(r_{3}+I\right) & =\left(r_{1} r_{2}+I\right)\left(r_{3}+I\right) \\
& =\left(r_{1} r_{2}\right) r_{3}+I \\
& =r_{1}\left(r_{2} r_{3}\right)+I \\
& =\left(r_{1}+I\right)\left(r_{2} r_{3}+I\right) \\
& =\left(r_{1}+I\right)\left(\left(r_{2}+I\right)\left(r_{3}+I\right)\right)
\end{aligned}
$$

(h) The coset $1+I$ is the identity in R / I since if $r+I \in R / I$ then

$$
\begin{aligned}
(1+I)(r+I) & =1 \cdot r+I \\
& =r+I \\
& =r \cdot 1+I \\
& =(r+I)(1+I) .
\end{aligned}
$$

(i) Assume $r, s, t \in R$. Then by definition of the operations

$$
\begin{aligned}
(r+I)((s+I)+(t+I)) & =(r+I)((s+t)+I) \\
& =r(s+t)+I \\
& =(r s+r t)+I \\
& =(r s+I)+(r t+I) \\
& =(r+I)(s+I)+(r+I)(t+I),
\end{aligned}
$$

and

$$
\begin{aligned}
((s+I)+(t+I))(r+I) & =((s+t)+I)(r+I) \\
& =(s+t) r+I \\
& =(s r+t r)+I \\
& =(s r+I)+(t r+I) \\
& =(s+I)(r+I)+(t+I)(r+I) .
\end{aligned}
$$

So R / I is a ring.
\Longleftarrow : Assume R / I is a ring with operations given by

$$
(r+I)+(s+I)=(r+s)+I \quad \text { and } \quad(r+I)(s+I)=r s+I, \quad \text { for } r+I, s+I \in R / I
$$

To show: If $k \in I$ and $r \in R$ then $k r \in I$ and $r k \in I$.
First we show: If $k \in I$ then $k+I=I$.
To show: (a) $k+I \subseteq I$.
(b) $I \subseteq k+I$.
(a) Let $i \in k+I$.

Then there exists $k_{1} \in I$ such that $i=k+k_{1}$.
Then, since I is a subgroup, $i=k+k_{1} \in I$.
So $k+I \subseteq I$.
(b) Assume $k_{1} \in I$.

Since $k_{1}-k \in I, k_{1}=k+\left(k_{1}-k\right) \in k+I$.
So $I \subseteq k+I$.
Now assume $r \in R$ and $k \in I$.
Then by definition of the operation

$$
\begin{aligned}
r k+I & =(r+I)(k+I) \\
& =(r+I) I \\
& =(r+I)(0+I) \\
& =0+I \\
& =I
\end{aligned}
$$

and

$$
\begin{aligned}
k r+I & =(k+I)(r+I) \\
& =(0+I)(r+I) \\
& =0+I \\
& =I .
\end{aligned}
$$

So $k r \in I$ and $r k \in I$.
So I is an ideal of R.
Proposition R.5.3. - Let $f: R \rightarrow S$ be a ring homomorphism. Let 0_{R} and 0_{S} be the zeros for R and S respectively. Then
(a) $f\left(0_{R}\right)=0_{S}$.
(b) If $r \in R$ then $f(-r)=-f(r)$.

Proof. - (a) Add $-f\left(0_{R}\right)$ to each side of the following equation.

$$
f\left(0_{R}\right)=f\left(0_{R}+0_{R}\right)=f\left(0_{R}\right)+f\left(0_{R}\right) .
$$

(b) Since

$$
\begin{array}{r}
f(r)+f(-r)=f(r+(-r))=f\left(0_{R}\right)=0_{S} \quad \text { and } \\
f(-r)+f(r)=f((-r)+r)=f\left(0_{R}\right)=0_{S},
\end{array}
$$

then $f(-r)=-f(r)$.

Proposition R.5.4. - Let $f: R \rightarrow S$ be a ring homomorphism. Then
(a) $\operatorname{ker} f$ is an ideal of R.
(b) $\operatorname{im} f$ is a subring of S.

Proof. - Let 0_{R} and 0_{S} be the zeros of R and S respectively.
(a) To show: $\operatorname{ker} f$ is an ideal of R.

To show: (aa) If $k_{1}, k_{2} \in \operatorname{ker} f$ then $k_{1}+k_{2} \in \operatorname{ker} f$.
(ab) $0_{R} \in \operatorname{ker} f$.
(ac) If $k \in \operatorname{ker} f$ then $-k \in \operatorname{ker} f$.
(ad) If $k \in \operatorname{ker} f$ and $r \in R$ then $k r \in \operatorname{ker} f$ and $r k \in \operatorname{ker} f$.
(aa) Assume $k_{1}, k_{2} \in \operatorname{ker} f$.
Then $f\left(k_{1}\right)=0_{S}$ and $f\left(k_{2}\right)=0_{S}$.
So $f\left(k_{1}+k_{2}\right)=f\left(k_{1}\right)+f\left(k_{2}\right)=0_{S}$.
So $k_{1}+k_{2} \in \operatorname{ker} f$.
(ab) Since $f\left(0_{R}\right)=0_{S}, 0_{R} \in \operatorname{ker} f$.
(ac) Assume $k \in \operatorname{ker} f$.
So $f(k)=0_{S}$.
Then

$$
f(-k)=-f(k)=0_{S} .
$$

So $-k \in \operatorname{ker} f$.
(ad) Assume $k \in \operatorname{ker} f$ and $r \in R$.
Then

$$
\begin{aligned}
& f(k r)=f(k) f(r)=0_{S} \cdot f(r)=0_{S} \quad \text { and } \\
& f(r k)=f(r) f(k)=f(r) \cdot 0_{S}=0_{S} .
\end{aligned}
$$

So $k r \in \operatorname{ker} f$ and $r k \in \operatorname{ker} f$.
So $\operatorname{ker} f$ is an ideal of R.
(b) To show: (ba) If $s_{1}, s_{2} \in \operatorname{im} f$ then $s_{1}+s_{2} \in \operatorname{im} f$.
(bb) $0_{S} \in \operatorname{im} f$.
(bc) If $s \in \operatorname{im} f$ then $-s \in \operatorname{im} f$.
(bd) If $s_{1}, s_{2} \in \operatorname{im} f$ then $s_{1} s_{2} \in \operatorname{im} f$.
(be) $1_{S} \in \operatorname{im} f$.
(ba) Assume $s_{1}, s_{2} \in \operatorname{im} f$. Then $s_{1}=f\left(r_{1}\right)$ and $s_{2}=f\left(r_{2}\right)$ for some $r_{1}, r_{2} \in R$. Then

$$
s_{1}+s_{2}=f\left(r_{1}\right)+f\left(r_{2}\right)=f\left(r_{1}+r_{2}\right),
$$

since f is a homomorphism.
So $s_{1}+s_{2} \in \operatorname{im} f$.
(bb) By Proposition R.1.1(a), $f\left(0_{R}\right)=0_{S}$.
So $0_{S} \in \operatorname{im} f$.
(bc) Assume $s \in \operatorname{im} f$. Then $s=f(r)$ for some $r \in R$.
Then, by Proposition R.1.1(b),

$$
-s=-f(r)=f(-r) .
$$

So $-s \in \operatorname{im} f$.
(bd) Assume $s_{1}, s_{2} \in \operatorname{im} f$.
Then there exists $r_{1}, r_{2} \in R$ such that $s_{1}=f\left(r_{1}\right)$ and $s_{2}=f\left(r_{2}\right)$.
Since f is a homomorphism then

$$
s_{1} s_{2}=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right),
$$

So $s_{1} s_{2} \in \operatorname{im} f$.
(be) By the definition of ring homomorphism, $f\left(1_{R}\right)=1_{S}$ and so $1_{S} \in \operatorname{im} f$. So $\operatorname{im} f$ is a subring of S.

Proposition R.5.5. - Let $f: R \rightarrow S$ be a ring homomorphism.
Let 0_{R} be the zero in R. Then
(a) $\operatorname{ker} f=\left\{0_{R}\right\}$ if and only if f is injective.
(b) $\operatorname{im} f=S$ if and only if f is surjective.

Proof. -
(a) Let 0_{R} and 0_{S} be the zeros in R and S respectively.
\Longrightarrow : Assume ker $f=\left(0_{R}\right)$.
To show: If $f\left(r_{1}\right)=f\left(r_{2}\right)$ then $r_{1}=r_{2}$.
Assume $f\left(r_{1}\right)=f\left(r_{2}\right)$.
Then, by the fact that f is a homomorphism,

$$
0_{S}=f\left(r_{1}\right)-f\left(r_{2}\right)=f\left(r_{1}-r_{2}\right) .
$$

So $r_{1}-r_{2} \in \operatorname{ker} f$.
But ker $f=\left(0_{S}\right)$.
So $r_{1}-r_{2}=0_{R}$.
So $r_{1}=r_{2}$.
So f is injective.
\Longleftarrow : Assume f is injective.
To show: (aa) $\left(0_{R}\right) \subseteq \operatorname{ker} f$.
(ab) $\operatorname{ker} f \subseteq\left(0_{R}\right)$.
(aa) Since $f\left(0_{R}\right)=0_{S}, 0_{R} \in \operatorname{ker} f$.
So $\left(0_{R}\right) \subseteq \operatorname{ker} f$.
(ab) Let $k \in \operatorname{ker} f$.
Then $f(k)=0_{S}$.
So $f(k)=f\left(0_{R}\right)$.
Thus, since f is injective, $k=0_{R}$.
So ker $f \subseteq\left(0_{R}\right)$.
So ker $f=\left(0_{R}\right)$.
(b) \Longrightarrow : Assume im $f=S$.

To show: If $s \in S$ then there exists $r \in R$ such that $f(r)=s$.
Assume $s \in S$.
Then $s \in \operatorname{im} f$.
So there exists $r \in R$ such that $f(r)=s$.
So f is surjective.
\Longleftarrow : Assume f is surjective.
To show: (a) im $f \subseteq S$.
(b) $S \subseteq \operatorname{im} f$.
(a) Let $x \in \operatorname{im} f$.

Then there exists $r \in R$ such that $x=f(r)$.
By the definition of $f, f(r) \in S$.
So $x \in S$.
So $\operatorname{im} f \subseteq S$.
(b) Assume $x \in S$.

Since f is surjective there exists $r \in R$ such that $f(r)=x$.
So $x \in \operatorname{im} f$.
So $S \subseteq \operatorname{im} f$.
So $\operatorname{im} f=S$.

Theorem R.5.6.
(a) Let $f: R \rightarrow S$ be a ring homomorphism and let $K=\operatorname{ker} f$. Define

$$
\begin{array}{rllc}
\hat{f}: \quad R / \operatorname{ker} f & \rightarrow & S \\
r+K & \mapsto & f(r) .
\end{array}
$$

Then \hat{f} is a well defined injective ring homomorphism.
(b) Let $f: R \rightarrow S$ be a ring homomorphism and define

$$
\begin{aligned}
f^{\prime}: & \rightarrow \\
r & \rightarrow \operatorname{imf} f \\
r & \mapsto f(r) .
\end{aligned}
$$

Then f^{\prime} is a well defined surjective ring homomorphism.
(c) If $f: R \rightarrow S$ is a ring homomorphism, then

$$
R / \operatorname{ker} f \simeq \operatorname{im} f
$$

where the isomorphism is a ring isomorphism.
Proof. - Let 1_{R} and 1_{S} be the identities in R and S respectively.
(a) To show: (aa) \hat{f} is well defined.
(ab) \hat{f} is injective.
(ac) \hat{f} is a ring homomorphism.
(aa) To show: (aaa) If $r \in R$ then $\hat{f}(r+K) \in S$.
(aab) If $r_{1}+K=r_{2}+K \in R / K$ then $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
(aaa) Assume $r \in R$.
Then $\hat{f}(r+K)=f(r)$, and $f(r) \in S$, by the definition of \hat{f} and f.
(aab) Assume $r_{1}+K=r_{2}+K$.
Then $r_{1}=r_{2}+k$ for some $k \in K$.
To show: $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$, i.e.,
To show: $f\left(r_{1}\right)=f\left(r_{2}\right)$.
Since $k \in \operatorname{ker} f$, we have $f(k)=0$ and so
$f\left(r_{1}\right)=f\left(r_{2}+k\right)=f\left(r_{2}\right)+f(k)=f\left(r_{2}\right)+0=f\left(r_{2}\right)$.
So $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
So \hat{f} is well defined.
(ab) To show: If $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$ then $r_{1}+K=r_{2}+K$.
Assume $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
Then $f\left(r_{1}\right)=f\left(r_{2}\right)$.
So $f\left(r_{1}\right)-f\left(r_{2}\right)=0$.
So $f\left(r_{1}-r_{2}\right)=0$.
So $r_{1}-r_{2} \in \operatorname{ker} f$.
So there exists $k \in \operatorname{ker} f$ such that $r_{1}-r_{2}=k$.
So there exists $k \in \operatorname{ker} f$ such that $r_{1}=r_{2}+k$.
To show: (aba) $r_{1}+K \subseteq r_{2}+K$.
(abb) $r_{2}+K \subseteq r_{1}+K$.
(aba) Let $r \in r_{1}+K$.
Then there exists $k_{1} \in K$ such that $r=r_{1}+k_{1}$.
Since $k+k_{1} \in K$ then $r=r_{2}+k+k_{1} \in r_{2}+K$
So $r_{1}+K \subseteq r_{2}+K$.
(abb) Let $r \in r_{2}+K$.
Then there exists $k_{2} \in K$ such that $r=r_{2}+k_{2}$, for some $k_{2} \in K$.

$$
\begin{aligned}
& \text { Since }-k+k_{2} \in K \text { then } r=r_{2}+k_{2}=r_{1}-k+k_{2} \in r_{1}+K \text {. } \\
& \text { So } r_{2}+K \subseteq r_{1}+K \text {. } \\
& \text { So } r_{1}+K=r_{2}+K \text {. }
\end{aligned}
$$

So \hat{f} is injective.
(ac) To show: (aca) If $r_{1}+K, r_{2}+K \in R / K$ then $\hat{f}\left(\left(r_{1}+k\right)+\left(r_{2}+K\right)\right)=$ $\hat{f}\left(r_{1}+K\right)+\hat{f}\left(r_{2}+K\right)$.
(acb) If $r_{1}+K, r_{2}+K \in R / K$ then $\hat{f}\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\hat{f}\left(r_{1}+\right.$ $K) \hat{f}\left(r_{2}+K\right)$.

$$
\text { (acc) } \hat{f}\left(1_{R}+K\right)=1_{S} \text {. }
$$

(aca) Let $r_{1}+K, r_{2}+K \in R / K$.
Since f is a homomorphism,
$\hat{f}\left(r_{1}+K\right)+\hat{f}\left(r_{2}+K\right)=f\left(r_{1}\right)+f\left(r_{2}\right)=f\left(r_{1}+r_{2}\right)=\hat{f}\left(\left(r_{1}+r_{2}\right)+K\right)=\hat{f}\left(\left(r_{1}+K\right)+\left(r_{2}+K\right)\right)$.
(acb) Let $r_{1}+K, r_{2}+K \in R / K$.
Since f is a homomorphism,

$$
\hat{f}\left(r_{1}+K\right) \hat{f}\left(r_{2}+K\right)=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right)=\hat{f}\left(r_{1} r_{2}+K\right)=\hat{f}\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right) .
$$

(acc) Since f is a homomorphism,

$$
\hat{f}\left(1_{R}+K\right)=f\left(1_{R}\right)=1_{S} .
$$

So \hat{f} is a ring homomorphism.
So \hat{f} is a well defined injective ring homomorphism.
(b) Let 1_{R} and 1_{S} be the identities in R and S respectively.

To show: (ba) f^{\prime} is well defined.
(bb) f^{\prime} is surjective.
(bc) f^{\prime} is a ring homomorphism.
(ba) and (bb) are proved in Ex. 2.2.4 a) and b), Part I.FIX THIS UPFIX THIS UP FIX
(bc) To show: (bca) If $r_{1}, r_{2} \in R$ then $f^{\prime}\left(r_{1}+r_{2}\right)=f^{\prime}\left(r_{1}\right)+f^{\prime}\left(r_{2}\right)$. (bcb) If $r_{1}, r_{2} \in R$ then $f^{\prime}\left(r_{1} r_{2}\right)=f^{\prime}\left(r_{1}\right) f^{\prime}\left(r_{2}\right)$.

$$
\text { (bcc) } f^{\prime}\left(1_{R}\right)=1_{S} .
$$

(bca) Let $r_{1}, r_{2} \in R$.
Then, since f is a homomorphism,

$$
f^{\prime}\left(r_{1}+r_{2}\right)=f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)=f^{\prime}\left(r_{1}\right)+f^{\prime}\left(r_{2}\right) .
$$

(bcb) Let $r_{1}, r_{2} \in R$.
Then, since f is a homomorphism,

$$
f^{\prime}\left(r_{1} r_{2}\right)=f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)=f^{\prime}\left(r_{1}\right) f^{\prime}\left(r_{2}\right)
$$

(bcc) Since f is a homomorphism,

$$
f^{\prime}\left(1_{R}\right)=f\left(1_{R}\right)=1_{S} .
$$

So f^{\prime} is a homomorphism.
So f^{\prime} is a well defined surjective ring homomorphism.
(c) Let $K=\operatorname{ker} f$.

By (a), the function

$$
\begin{array}{lccc}
\hat{f}: & R / K & \rightarrow & S \\
r+K & \mapsto & f(r)
\end{array}
$$

is a well defined injective ring homomorphism.
By (b), the function

$$
\begin{array}{lccc}
\hat{f}^{\prime}: & R / K & \rightarrow & \operatorname{im} \hat{f} \\
& r+K & \mapsto & \hat{f}(r+K)=f(r)
\end{array}
$$

is a well defined surjective ring homomorphism.
To show: $\operatorname{im} \hat{f}=\operatorname{im} f$.
(cb) \hat{f}^{\prime} is injective.
(ca) To show: (caa) im $\hat{f} \subseteq \operatorname{im} f$.

$$
(\mathrm{cab}) \operatorname{im} f \subseteq \operatorname{im} \hat{f} .
$$

(caa) Let $s \in \operatorname{im} \hat{f}$.
Then there exists $r+K \in R / K$ such that $\hat{f}(r+K)=s$.
Let $r^{\prime} \in r+K$.
Then there exists $k \in K$ such that $r^{\prime}=r+k$.
Since f is a homomorphism and $f(k)=0$ then
$f\left(r^{\prime}\right)=f(r+k)=f(r)+f(k)=f(r)=\hat{f}(r+k)=s$.
So $s \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
(cab) Let $s \in \operatorname{im} \hat{f}$.
Then there exists $r \in R$ such that $f(r)=s$.
So $\hat{f}(r+K)=f(r)=s$.
So $s \in \operatorname{im} f$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} f=\operatorname{im} \hat{f}$.
(cb) To show: If $\hat{f}^{\prime}\left(r_{1}+K\right)=\hat{f}^{\prime}\left(r_{2}+K\right)$ then $r_{1}+K=r_{2}+K$.
Assume $\hat{f^{\prime}}\left(r_{1}+K\right)=\hat{f^{\prime}}\left(r_{2}+K\right)$.
Then $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
Since \hat{f} is injective then $r_{1}+K=r_{2}+K$.
So \hat{f}^{\prime} is injective.
Thus

$$
\begin{array}{lrl}
\hat{f}^{\prime}: & R / K & \rightarrow \operatorname{im} f \\
r+K & \mapsto & f(r)
\end{array}
$$

is a well defined bijective ring homomorphism.

Proposition R.5.7. - Let R be a ring. Let 0_{R} and 1_{R} be the zero and the identity in R respectively.
(a) There is a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$ given by

$$
\begin{aligned}
\varphi(0) & =0_{R} \\
\varphi(m) & =\underbrace{1_{R}+\cdots+1_{R}}_{m \text { times }}, \quad \text { and } \\
\varphi(-m) & =-\varphi(m), \quad \text { for } m \in \mathbb{Z}_{>0}
\end{aligned}
$$

(b) $\operatorname{ker} \varphi=n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$ where $n=\operatorname{char}(R)$ is the characteristic of the ring R.

Proof. - Let 1_{R} and 0_{R} be the identity and zero of the ring R.
(a) Define $\varphi: \mathbb{Z} \rightarrow R$ by defining, for $m \in \mathbb{Z}_{>0}$,

$$
\begin{align*}
\varphi(m) & =\underbrace{1_{R}+\cdots+1_{R}}_{m \text { times }}, \\
\varphi(-m) & =-\varphi(m), \tag{R.5.1}\\
\varphi(0) & =0_{R} .
\end{align*}
$$

To show: (aa) φ is unique.
(ab) φ is well defined, i.e. a function.
(ac) φ is a homomorphism.
(aa) To show: If $\varphi^{\prime}: \mathbb{Z} \rightarrow R$ is a homomorphism then $\varphi^{\prime}=\varphi$.
Assume $\varphi^{\prime}: \mathbb{Z} \rightarrow R$ is a homomorphism.
To show: If $m \in \mathbb{Z}$ then $\varphi^{\prime}(m)=\varphi(m)$.
If $m=1$ then $\varphi^{\prime}(1)=1_{R}=\varphi(1)$.
If $m>0$ then

$$
\begin{aligned}
\varphi^{\prime}(m) & =\varphi^{\prime} \underbrace{(1+\cdots+1)}_{m \text { times }}=\underbrace{\varphi^{\prime}(1)+\cdots+\varphi^{\prime}(1)}_{m \text { times }}=\underbrace{1_{R}+\cdots+1_{R}}_{m \text { times }}=\varphi(m) . \\
\varphi^{\prime}(-m) & =-\varphi^{\prime}(m)=-\varphi(m)=\varphi(-m) .
\end{aligned}
$$

If $m=0$ then $\varphi^{\prime}(0)=0_{R}=\varphi(0)$.
(ab) Since $\mathbb{Z}=\mathbb{Z}_{>0} \sqcup\{0\} \sqcup-\mathbb{Z}_{>0}$ and the right hand side of each expression in
(R.5.1) is an element of R then φ is a fucntion.
(ac) To show: (aca) $\varphi(1)=1_{R}$.

$$
\begin{aligned}
& \text { (acb) } \varphi(m n)=\varphi(m) \varphi(n) \\
& \text { (acc) } \varphi(m+n)=\varphi(m)+\varphi(n)
\end{aligned}
$$

(aca) This follows from the definition of φ.
(acb) Let $m, n>0$. Then, by the distributive law,

$$
\begin{gathered}
\varphi(m) \varphi(n)=(\underbrace{1+\cdots+1}_{m \text { times }})(\underbrace{1+\cdots+1}_{n \text { times }})=\underbrace{1+\cdots+1}_{m n \text { times }}=\varphi(m n) . \\
\varphi(m) \varphi(-n)=\varphi(m)(-\varphi(n))=\varphi(m)\left(-1_{R}\right) \varphi(n)=\left(-1_{R}\right) \varphi(m) \varphi(n) \\
=\left(-1_{R}\right) \varphi(m n)=-\varphi(m n)=\varphi(m(-n)) . \\
\varphi(-m) \varphi(n)=-\varphi(m) \varphi(n)=\left(-1_{R}\right) \varphi(m) \varphi(n)=\left(-1_{R}\right) \varphi(m n)=-\varphi(m n)=\varphi((-m) n) . \\
\varphi(-m) \varphi(-n)=\left(-1_{R}\right) \varphi(m)(-1)_{R} \varphi(n)=\varphi(m) \varphi(n)=\varphi(m n)=\varphi((-m)(-n)) .
\end{gathered}
$$

(acc) Let $m, n>0$.

Then

$$
\begin{gathered}
\varphi(m)+\varphi(n)=\underbrace{1+\cdots+1}_{m \text { times }}+\underbrace{1+\cdots+1}_{n \text { times }}=\underbrace{1+\cdots+1}_{m+n \text { times }}=\varphi(m+n) . \\
\begin{aligned}
& \varphi(-m)+\varphi(-n)=-\varphi(m)-\varphi(n)=-(\varphi(m)+\varphi(n))=-\varphi(m+n) \\
&=\varphi(-(m+n))=\varphi((-m)+(-n)) .
\end{aligned}
\end{gathered}
$$

If $m \geqslant n, \varphi(m)+\varphi(-n)=\varphi(m)-\varphi(n)=\underbrace{(1+\cdots+1)}_{m \text { times }}-\underbrace{(1+\cdots+1)}_{n \text { times }}$

$$
=\underbrace{1+\cdots+1}_{m-n \text { times }}=\varphi(m-n) .
$$

If $m<n, \varphi(m)+\varphi(-n)=\varphi(m)-\varphi(n)=-(\varphi(n)-\varphi(m))$ $=-\varphi(n-m)=\varphi(m-n)$.

So φ is a homomorphism.
(b) Let $n=\operatorname{char}(R)$.

To show: (ba) $n \mathbb{Z} \subseteq \operatorname{ker} \varphi$.
(bb) $\operatorname{ker} \varphi \subseteq n \mathbb{Z}$.
First we show $n \in \operatorname{ker} \varphi$.
By the definition of $\operatorname{char}(R)$,

$$
\varphi(n)=\underbrace{1_{R}+\cdots+1_{R}}_{n \text { times }}=0_{R}
$$

So $n \in \operatorname{ker} \varphi$.
(ba) Let $m \in n \mathbb{Z}$.
Then there exists $k \in \mathbb{Z}$ such that $m=n k$.
Since φ is a homomorphism,

$$
\varphi(m)=\varphi(n k)=\varphi(n) \varphi(k)=0 \cdot \varphi(k)=0
$$

So $\varphi(m) \in \operatorname{ker} \varphi$. So $n \mathbb{Z} \subseteq \operatorname{ker} \varphi$.
(bb) Let $m \in \operatorname{ker} \varphi$.
Write $m=n r+s$ with $0 \leqslant s<n$ and $r \in \mathbb{Z}$.
Then, since φ is a homomorphism,

$$
0_{R}=\varphi(m)=\varphi(n r+s)=\varphi(n) \varphi(r)+\varphi(s)=0_{R}+\varphi(s)=\underbrace{1_{R}+\cdots+1_{R}}_{s \text { times }}
$$

By definition of $\operatorname{char}(R), n$ is the smallest positive integer such that $\underbrace{1_{R}+\cdots 1_{R}}_{n \text { times }}=$ 0_{R}.
So $s=0$.
So $m=n r$.
So $m \in n \mathbb{Z}$.
So $\operatorname{ker} \varphi \subseteq n \mathbb{Z}$.
So $\operatorname{ker} \varphi=n \mathbb{Z}$.

Proposition R.5.8. - Every proper ideal I of a ring R is contained in a maximal ideal of R.

Proof. - The idea is to use Zorn's lemma on the set of proper ideals of R containing I, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn's Lemma. If S is a poset such that every chain in S has an upper bound then S has a maximal element.

Let S be the set of proper ideals of R containing I, ordered by inclustion.
To show: Given a chain of ideals in S

$$
\cdots \subseteq I_{k-1} \subseteq I_{k} \subseteq I_{k+1} \subseteq \cdots
$$

then there exists is a proper ideal J of R containing I that contains all the I_{k}.
Let

$$
J=\bigcup_{k} I_{k} .
$$

To show: (a) J is an ideal.
(b) J is a proper ideal.
(a) To show: (aa) If $i, j \in J$ then $i+j \in J$.
(ab) If $i \in J$ and $r \in R$ then ir $\in J$ and $r i \in J$.
(aa) Assume $i, j \in J$.
Then there exists k and k^{\prime} such that $i \in I_{k}$ and $j \in I_{k^{\prime}}$.
Since either $I_{k} \subseteq I_{k^{\prime}}$ or $I_{k^{\prime}} \subseteq I_{k}$ then either $i, j \in I_{k}$ or $i, j \in I_{k^{\prime}}$.
Since I_{k} and $I_{k^{\prime}}$ are ideals then either $i+j \in I_{k}$ or $i+j \in I_{k^{\prime}}$
So

$$
i+j \in \bigcup_{k} I_{k}=J
$$

(ab) Assume $i \in J$ and $r \in R$.
Then there exists k such that $i \in I_{k}$.
Since I_{k} is an ideal then $r i \in I_{k}$ and $i r \in I_{k}$.
So

$$
r i \in \bigcup_{k} I_{k}=J \quad \text { and } \quad i r \in \bigcup_{k} I_{k}=J .
$$

So J is an ideal.
(b) To show: $1 \notin J$.

Since the I_{k} are proper ideals then $1 \notin I_{k}$.
So

$$
1 \notin \bigcup_{k} I_{k}=J
$$

So J is a proper ideal of R.
So every chain of proper ideals in R that contain I has an upper bound.
Thus, by Zorn's lemma, the set S of proper ideals containing I has a maximal element. So I is contained in a maximal ideal.

[^0]: Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

