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R.5. Proofs: Rings

Proposition R.5.1. — Let R be a ring and let I be an additive subgroup of R. Then
the cosets of I in R partition R.

Proof. —
To show: (a) If r 2 R then there exists r0 2 R such that r 2 r0 + I.

(b) If (r1 + I) \ (r2 + I) 6= ; then r1 + I = r2 + I.

(a) Let r 2 R.
Then r = r + 0 2 r + I, since 0 2 I.
So r 2 r + I.

(b) Assume (r1 + I) \ (r2 + I) 6= ;.
To show: (ba) r1 + I ✓ r2 + I.

(bb) r2 + I ✓ r1 + I.
Let s 2 (r1 + I) \ (r2 + I).
Suppose s = r1 + i1 and s = r2 + i2 where i1, i2 2 I.
Then

r1 = r1 + i1 � i1 = s� i1 = r2 + i2 � i1 and

r2 = r2 + i2 � i2 = s� i2 = r1 + i1 � i2.

(ba) Let r 2 r1 + I.
Then r = r1 + i for some i 2 I.
Then

r = r1 + i = r2 + i2 � i1 + i 2 r2 + I,

since i2 � i1 + i 2 I.
So r1 + I ✓ r2 + I.

(bb) Let r 2 r2 + I.
Then r = r2 + i for some i 2 I.
So

r = r2 + i = r1 + i1 � i2 + i 2 r1 + I,

since i1 � i2 + i 2 I.
So r2 + I ✓ r1 + I.

So r1 + I = r2 + I.

So the cosets of I in R partition R.

Proposition R.5.2. — Let I be an additive subgroup of a ring R. I is an ideal of R if
and only if R/I with operations given by

(r1 + I) + (r2 + I) = (r1 + r2) + I and (r1 + I)(r2 + I) = r1r2 + I

is a ring.

Proof. —
=) : Assume I is an ideal of R.

To show: (a) (r1 + I) + (r2 + I) = (r1 + r2) + I is a well defined operation on R/I.
(b) (r1 + I)(r2 + I) = (r1r2) + I is a well defined operation on R/I.
(c) If r1 + I, r2 + I, r3 + I 2 R/I then

�
(r1 + I) + (r2 + I)

�
+ (r3 + I) =

(r1 + I) +
�
(r2 + I) + (r3 + I)

�

(d) If r1 + I, r2 + I 2 R/I then (r1 + I) + (r2 + I) = (r2 + I) + (r1 + I).
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(e) 0 + I = I is the zero in R/I.
(f) �r + I is the additive inverse of r + I.
(g) If r1 + I, r2 + I, r3 + I 2 R/I then

�
(r1 + I)(r2 + I)

�
(r3 + I) =

(r1 + I)
�
(r2 + I)(r3 + I)

�
.

(h) 1 + I is the identity in R/I.
(i) If r1 + I, r2 + I, r3 + I 2 R/I then

(r1 + I)
�
(r2 + I) + (r3 + I)

�
= (r1 + I)(r2 + I) + (r1 + I)(r3 + I) and

�
(r2 + I) + (r3 + I)

�
(r1 + I) = (r2 + I)(r1 + I) + (r3 + I)(r1 + I).

(a) We want the operation on R/I given by

R/I ⇥R/I ! R/I
(r + I, s+ I) 7! (r + s) + I

to be well defined, i.e. a function.
Let (r1+I, s1+I), (r2+I, s2+I) 2 R/I⇥R/I such that (r1+I, s1+I) = (r2+I, s2+I).
Then r1 + I = r2 + I and s1 + I = s2 + I.
To show: (r1 + s1) + I = (r2 + s2) + I.
So we must show: (aa) (r1 + s1) + I ✓ (r2 + s2) + I.

(ab) (r2 + s2) + I ✓ (r1 + s1) + I.
(aa) Since r1 + I = r2 + I then r1 = r1 + 0 2 r2 + I

So there exists k1 2 I such that r1 = r2 + k1.
Similarly, there exists k2 2 I such that s1 = s2 + k2.
Let t 2 (r1 + s1) + I.
Then there exists k 2 I such that t = r1 + s1 + k.
So

t = r1 + s1 + k = r2 + k1 + s2 + k2 + k = r2 + s2 + k1 + k2 + k,

since addition is commutative.
So t = (r2 + s2) + (k1 + k2 + k) 2 r2 + s2 + I.
So (r1 + s1) + I ✓ (r2 + s2) + I.

(ab) Since r1 + I = r2 + I then there exists k1 2 I such that r1 + k1 = r2.
Since s1 + I = s2 + I then there exists k2 2 I such that s1 + k2 = s2.
Let t 2 (r2 + s2) + I.
Then there exists k 2 I such that t = r2 + s2 + k.
So

t = r2 + s2 + k = r1 + k1 + s1 + k2 + k = r1 + s1 + k1 + k2 + k,

since addition is commutative.
So t = (r1 + s1) + (k1 + k2 + k) 2 (r1 + s1) + I.
So (r2 + s2) + I ✓ (r1 + s1) + I.
So (r1 + ss) + I = (r2 + s2) + I.

So the operation given by (r1+I)+(r2+I) = (r1+r2)+I is a well defined operation
on R/I.

(b) We want the operation on R/I given by

R/I ⇥R/I ! R/I
(r + I, s+ I) 7! (rs) + I

to be well defined, i.e. a function.
Let (r1+I, s1+I), (r2+I, s2+I) 2 R/I⇥R/I such that (r1+I, s1+I) = (r2+I, s2+I).
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Then r1 + I = r2 + I and s2 + I = s2 + I.
To show: r1s1 + I = r2s2 + I.
So we must show: (ba) r1s1 + I ✓ r2s2 + I.

(bb) r2s2 + I ✓ r1s1 + I.
(ba) Since r1 + I = r2 + I, there exists k1 2 I such that r1 = r2 + k1.

Since s1 + I = s2 + I, there exists k2 2 I such that s1 = s2 + k2.
Let t 2 r1s1 + I.
Then there exists k 2 I such that t = r1s1 + k.
So

t = r1s1 + k = (r2 + k1)(s2 + k2) + k = r2s2 + k1s2 + r2k2 + k1k2 + k,

by using the distributive law.
k1s2 + r2k2 + k1k2 + k 2 I by the definition of ideal.
So t 2 r2s2 + I.
So r1s1 + I ✓ r2s2 + I.

(bb) Since r1 + I = r2 + I, there exists k1 2 I such that r1 + k1 = r2.
Since s1 + I = s2 + I, there exists k2 2 I such that s1 + k2 = s2.
Let t 2 r2s2 + I.
Then there exists k 2 I such that t = r2s2 + k.
So

t = r2s2 + k = (r1 + k1)(s1 + k2) + k = r1s1 + r1k2 + k1s1 + k1k2 + k,

by using the distributive law.
By the definition of ideal, r1k2 + k1s1 + k1k2 + k 2 I.
So t 2 r1s1 + I.
So r2s2 + I ✓ r1s1 + I.

So r1s1 + I = r2s2 + I.
So the operation given by (r + I)(s + I) = rs + I is a well defined operation on
R/I.

(c) By the associativity of addition in R and the definition of the operation in R/I, if
r1 + I, r2 + I, r3 + I 2 R/I then

�
(r1 + I) + (r2 + I)

�
+ (r3 + I) =

�
(r1 + r2) + I

�
+ (r3 + I)

=
�
(r1 + r2) + r3

�
+ I

=
�
r1 + (r2 + r3)

�
+ I

= (r1 + I) +
�
(r2 + r3) + I

�

= (r1 + I) +
�
(r2 + I) + (r3 + I)

�

(d) By the commutativity of addition in R and the definition of the operation in R/I,
if r1 + I, r2 + I 2 R/I then

(r1 + I) + (r2 + I) = (r1 + r2) + I

= (r2 + r1) + I

= (r2 + I) + (r1 + I)
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(e) The coset I = 0 + I is the zero in R/I since if r + I 2 R/I then

I + (r + I) = (0 + r) + I

= r + I

= (r + 0) + I = (r + I) + I.

(f) Given any coset r + I, its additive inverse is (�r) + I since if r + I 2 R/I then

(r + I) + (�r + I) = r + (�r) + I

= 0 + I

= I

= (�r + r) + I

= (�r + I) + (r + I)

(g) By the associativity of multiplication in R and the definition of the operation in
R/I, if r1 + I, r2 + I, r3 + I 2 R/I then

�
(r1 + I)(r2 + I)

�
(r3 + I) = (r1r2 + I)(r3 + I)

= (r1r2)r3 + I

= r1(r2r3) + I

= (r1 + I)(r2r3 + I)

= (r1 + I)
�
(r2 + I)(r3 + I)

�

(h) The coset 1 + I is the identity in R/I since if r + I 2 R/I then

(1 + I)(r + I) = 1 · r + I

= r + I

= r · 1 + I

= (r + I)(1 + I).

(i) Assume r, s, t 2 R. Then by definition of the operations

(r + I)
�
(s+ I) + (t+ I)

�
= (r + I)

�
(s+ t) + I

�

= r(s+ t) + I

= (rs+ rt) + I

= (rs+ I) + (rt+ I)

= (r + I)(s+ I) + (r + I)(t+ I),

and
�
(s+ I) + (t+ I)

�
(r + I) =

�
(s+ t) + I

�
(r + I)

= (s+ t)r + I

= (sr + tr) + I

= (sr + I) + (tr + I)

= (s+ I)(r + I) + (t+ I)(r + I).

So R/I is a ring.
(=: Assume R/I is a ring with operations given by

(r+ I) + (s+ I) = (r+ s) + I and (r+ I)(s+ I) = rs+ I, for r + I, s+ I 2 R/I.
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To show: If k 2 I and r 2 R then kr 2 I and rk 2 I.
First we show: If k 2 I then k + I = I.
To show: (a) k + I ✓ I.

(b) I ✓ k + I.

(a) Let i 2 k + I.
Then there exists k1 2 I such that i = k + k1.
Then, since I is a subgroup, i = k + k1 2 I.
So k + I ✓ I.

(b) Assume k1 2 I.
Since k1 � k 2 I, k1 = k + (k1 � k) 2 k + I.
So I ✓ k + I.

Now assume r 2 R and k 2 I.
Then by definition of the operation

rk + I = (r + I)(k + I)

= (r + I)I

= (r + I)(0 + I)

= 0 + I

= I

and

kr + I = (k + I)(r + I)

= (0 + I)(r + I)

= 0 + I

= I.

So kr 2 I and rk 2 I.
So I is an ideal of R.

Proposition R.5.3. — Let f : R ! S be a ring homomorphism. Let 0R and 0S be the
zeros for R and S respectively. Then
(a) f(0R) = 0S.
(b) If r 2 R then f(�r) = �f(r).

Proof. — (a) Add �f(0R) to each side of the following equation.

f(0R) = f(0R + 0R) = f(0R) + f(0R).

(b) Since

f(r) + f(�r) = f
�
r + (�r)

�
= f(0R) = 0S and

f(�r) + f(r) = f
�
(�r) + r

�
= f(0R) = 0S,

then f(�r) = �f(r).

Proposition R.5.4. — Let f : R ! S be a ring homomorphism. Then
(a) ker f is an ideal of R.
(b) imf is a subring of S.

Proof. — Let 0R and 0S be the zeros of R and S respectively.

(a) To show: ker f is an ideal of R.
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To show: (aa) If k1, k2 2 ker f then k1 + k2 2 ker f .
(ab) 0R 2 ker f .
(ac) If k 2 ker f then �k 2 ker f .
(ad) If k 2 ker f and r 2 R then kr 2 ker f and rk 2 ker f .

(aa) Assume k1, k2 2 ker f .
Then f(k1) = 0S and f(k2) = 0S.
So f(k1 + k2) = f(k1) + f(k2) = 0S.
So k1 + k2 2 ker f .

(ab) Since f(0R) = 0S, 0R 2 ker f .
(ac) Assume k 2 ker f .

So f(k) = 0S.
Then

f(�k) = �f(k) = 0S.

So �k 2 ker f .
(ad) Assume k 2 ker f and r 2 R.

Then

f(kr) = f(k)f(r) = 0S · f(r) = 0S and

f(rk) = f(r)f(k) = f(r) · 0S = 0S.

So kr 2 ker f and rk 2 ker f .
So ker f is an ideal of R.

(b) To show: (ba) If s1, s2 2 imf then s1 + s2 2 imf .
(bb) 0S 2 imf .
(bc) If s 2 imf then �s 2 imf .
(bd) If s1, s2 2 imf then s1s2 2 imf .
(be) 1S 2 imf .

(ba) Assume s1, s2 2 imf . Then s1 = f(r1) and s2 = f(r2) for some r1, r2 2 R.
Then

s1 + s2 = f(r1) + f(r2) = f(r1 + r2),

since f is a homomorphism.
So s1 + s2 2 imf .

(bb) By Proposition R.1.1(a), f(0R) = 0S.
So 0S 2 imf .

(bc) Assume s 2 imf . Then s = f(r) for some r 2 R.
Then, by Proposition R.1.1(b),

�s = �f(r) = f(�r).

So �s 2 imf .
(bd) Assume s1, s2 2 imf .

Then there exists r1, r2 2 R such that s1 = f(r1) and s2 = f(r2).
Since f is a homomorphism then

s1s2 = f(r1)f(r2) = f(r1r2),

So s1s2 2 imf .
(be) By the definition of ring homomorphism, f(1R) = 1S and so 1S 2 imf .
So imf is a subring of S.
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Proposition R.5.5. — Let f : R ! S be a ring homomorphism.
Let 0R be the zero in R. Then

(a) ker f = {0R} if and only if f is injective.
(b) imf = S if and only if f is surjective.

Proof. —

(a) Let 0R and 0S be the zeros in R and S respectively.
=) : Assume ker f = (0R).

To show: If f(r1) = f(r2) then r1 = r2.
Assume f(r1) = f(r2).
Then, by the fact that f is a homomorphism,

0S = f(r1)� f(r2) = f(r1 � r2).

So r1 � r2 2 ker f .
But ker f = (0S).
So r1 � r2 = 0R.
So r1 = r2.
So f is injective.

(=: Assume f is injective.
To show: (aa) (0R) ✓ ker f .

(ab) ker f ✓ (0R).
(aa) Since f(0R) = 0S, 0R 2 ker f .

So (0R) ✓ ker f .
(ab) Let k 2 ker f .

Then f(k) = 0S.
So f(k) = f(0R).
Thus, since f is injective, k = 0R.
So ker f ✓ (0R).
So ker f = (0R).

(b) =) : Assume im f = S.
To show: If s 2 S then there exists r 2 R such that f(r) = s.
Assume s 2 S.
Then s 2 imf .
So there exists r 2 R such that f(r) = s.
So f is surjective.

(=: Assume f is surjective.
To show: (a) im f ✓ S.

(b) S ✓ im f .
(a) Let x 2 im f .

Then there exists r 2 R such that x = f(r).
By the definition of f , f(r) 2 S.
So x 2 S.
So imf ✓ S.

(b) Assume x 2 S.
Since f is surjective there exists r 2 R such that f(r) = x.
So x 2 im f .
So S ✓ im f .

So im f = S.
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Theorem R.5.6. —
(a) Let f : R ! S be a ring homomorphism and let K = ker f . Define

f̂ : R/ ker f ! S
r +K 7! f(r).

Then f̂ is a well defined injective ring homomorphism.
(b) Let f : R ! S be a ring homomorphism and define

f 0 : R ! imf
r 7! f(r).

Then f 0 is a well defined surjective ring homomorphism.
(c) If f : R ! S is a ring homomorphism, then

R/ ker f ' imf

where the isomorphism is a ring isomorphism.

Proof. — Let 1R and 1S be the identities in R and S respectively.

(a) To show: (aa) f̂ is well defined.
(ab) f̂ is injective.
(ac) f̂ is a ring homomorphism.

(aa) To show: (aaa) If r 2 R then f̂(r +K) 2 S.
(aab) If r1 +K = r2 +K 2 R/K then f̂(r1 +K) = f̂(r2 +K).

(aaa) Assume r 2 R.
Then f̂(r +K) = f(r), and f(r) 2 S, by the definition of f̂ and f .

(aab) Assume r1 +K = r2 +K.
Then r1 = r2 + k for some k 2 K.
To show: f̂(r1 +K) = f̂(r2 +K), i.e.,
To show: f(r1) = f(r2).
Since k 2 ker f , we have f(k) = 0 and so

f(r1) = f(r2 + k) = f(r2) + f(k) = f(r2) + 0 = f(r2).

So f̂(r1 +K) = f̂(r2 +K).
So f̂ is well defined.

(ab) To show: If f̂(r1 +K) = f̂(r2 +K) then r1 +K = r2 +K.
Assume f̂(r1 +K) = f̂(r2 +K).
Then f(r1) = f(r2).
So f(r1)� f(r2) = 0.
So f(r1 � r2) = 0.
So r1 � r2 2 ker f .
So there exists k 2 ker f such that r1 � r2 = k.
So there exists k 2 ker f such that r1 = r2 + k.
To show: (aba) r1 +K ✓ r2 +K.

(abb) r2 +K ✓ r1 +K.
(aba) Let r 2 r1 +K.

Then there exists k1 2 K such that r = r1 + k1.
Since k + k1 2 K then r = r2 + k + k1 2 r2 +K
So r1 +K ✓ r2 +K.

(abb) Let r 2 r2 +K.
Then there exists k2 2 K such that r = r2 + k2, for some k2 2 K.
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Since �k + k2 2 K then r = r2 + k2 = r1 � k + k2 2 r1 +K.
So r2 +K ✓ r1 +K.
So r1 +K = r2 +K.

So f̂ is injective.
(ac) To show: (aca) If r1 + K, r2 + K 2 R/K then f̂

�
(r1 + k) + (r2 + K)

�
=

f̂(r1 +K) + f̂(r2 +K).
(acb) If r1 +K, r2 +K 2 R/K then f̂

�
(r1 +K)(r2 +K)

�
= f̂(r1 +

K)f̂(r2 +K).
(acc) f̂(1R +K) = 1S.

(aca) Let r1 +K, r2 +K 2 R/K.
Since f is a homomorphism,

f̂(r1+K)+f̂(r2+K) = f(r1)+f(r2) = f(r1+r2) = f̂
�
(r1+r2)+K

�
= f̂

�
(r1+K)+(r2+K)

�
.

(acb) Let r1 +K, r2 +K 2 R/K.
Since f is a homomorphism,

f̂(r1 +K)f̂(r2 +K) = f(r1)f(r2) = f(r1r2) = f̂(r1r2 +K) = f̂
�
(r1 +K)(r2 +K)

�
.

(acc) Since f is a homomorphism,

f̂(1R +K) = f(1R) = 1S.

So f̂ is a ring homomorphism.
So f̂ is a well defined injective ring homomorphism.

(b) Let 1R and 1S be the identities in R and S respectively.
To show: (ba) f 0 is well defined.

(bb) f 0 is surjective.
(bc) f 0 is a ring homomorphism.

(ba) and (bb) are proved in Ex. 2.2.4 a) and b), Part I.FIX THIS UPFIX THIS
UP FIX

(bc) To show: (bca) If r1, r2 2 R then f 0(r1 + r2) = f 0(r1) + f 0(r2). (bcb) If
r1, r2 2 R then f 0(r1r2) = f 0(r1)f 0(r2).

(bcc) f 0(1R) = 1S.
(bca) Let r1, r2 2 R.

Then, since f is a homomorphism,

f 0(r1 + r2) = f(r1 + r2) = f(r1) + f(r2) = f 0(r1) + f 0(r2).

(bcb) Let r1, r2 2 R.
Then, since f is a homomorphism,

f 0(r1r2) = f(r1r2) = f(r1)f(r2) = f 0(r1)f
0(r2).

(bcc) Since f is a homomorphism,

f 0(1R) = f(1R) = 1S.

So f 0 is a homomorphism.
So f 0 is a well defined surjective ring homomorphism.

(c) Let K = ker f .
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By (a), the function

f̂ : R/K ! S
r +K 7! f(r)

is a well defined injective ring homomorphism.
By (b), the function

f̂ 0 : R/K ! im f̂
r +K 7! f̂(r +K) = f(r)

is a well defined surjective ring homomorphism.
To show: im f̂ = im f .

(cb) f̂ 0 is injective.
(ca) To show: (caa) im f̂ ✓ im f .

(cab) im f ✓ im f̂ .
(caa) Let s 2 imf̂ .

Then there exists r +K 2 R/K such that f̂(r +K) = s.
Let r0 2 r +K.
Then there exists k 2 K such that r0 = r + k.
Since f is a homomorphism and f(k) = 0 then

f(r0) = f(r + k) = f(r) + f(k) = f(r) = f̂(r + k) = s.

So s 2 im f .
So im f̂ ✓ im f .

(cab) Let s 2 im f̂ .
Then there exists r 2 R such that f(r) = s.
So f̂(r +K) = f(r) = s.
So s 2 imf .
So imf ✓ imf̂ .

So imf = imf̂ .
(cb) To show: If f̂ 0(r1 +K) = f̂ 0(r2 +K) then r1 +K = r2 +K.

Assume f̂ 0(r1 +K) = f̂ 0(r2 +K).
Then f̂(r1 +K) = f̂(r2 +K).
Since f̂ is injective then r1 +K = r2 +K.
So f̂ 0 is injective.

Thus
f̂ 0 : R/K ! im f

r +K 7! f(r)

is a well defined bijective ring homomorphism.

Proposition R.5.7. — Let R be a ring. Let 0R and 1R be the zero and the identity in
R respectively.
(a) There is a unique ring homomorphism ' : Z ! R given by

'(0) = 0R,

'(m) = 1R + · · ·+ 1R| {z }
m times

, and

'(�m) = �'(m), for m 2 Z>0.
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(b) ker' = nZ = {nk | k 2 Z} where n = char(R) is the characteristic of the ring R.

Proof. — Let 1R and 0R be the identity and zero of the ring R.

(a) Define ' : Z ! R by defining, for m 2 Z>0,

'(m) = 1R + · · ·+ 1R| {z }
m times

,

'(�m) = �'(m),(R.5.1)

'(0) = 0R.

To show: (aa) ' is unique.
(ab) ' is well defined, i.e. a function.
(ac) ' is a homomorphism.

(aa) To show: If '0 : Z ! R is a homomorphism then '0 = '.
Assume '0 : Z ! R is a homomorphism.
To show: If m 2 Z then '0(m) = '(m).
If m = 1 then '0(1) = 1R = '(1).
If m > 0 then

'0(m) = '0(1 + · · ·+ 1)| {z }
m times

= '0(1) + · · ·+ '0(1)| {z }
m times

= 1R + · · ·+ 1R| {z }
m times

= '(m).

'0(�m) = �'0(m) = �'(m) = '(�m).

If m = 0 then '0(0) = 0R = '(0).
(ab) Since Z = Z>0 t {0} t �Z>0 and the right hand side of each expression in

(R.5.1) is an element of R then ' is a fucntion.
(ac) To show: (aca) '(1) = 1R.

(acb) '(mn) = '(m)'(n).
(acc) '(m+ n) = '(m) + '(n).

(aca) This follows from the definition of '.
(acb) Let m,n > 0. Then, by the distributive law,

'(m)'(n) = (1 + · · ·+ 1| {z }
m times

)(1 + · · ·+ 1| {z }
n times

) = 1 + · · ·+ 1| {z }
mn times

= '(mn).

'(m)'(�n) = '(m)
�
� '(n)

�
= '(m)(�1R)'(n) = (�1R)'(m)'(n)

= (�1R)'(mn) = �'(mn) = '
�
m(�n)

�
.

'(�m)'(n) = �'(m)'(n) = (�1R)'(m)'(n) = (�1R)'(mn) = �'(mn) = '
�
(�m)n

�
.

'(�m)'(�n) = (�1R)'(m)(�1)R'(n) = '(m)'(n) = '(mn) = '
�
(�m)(�n)

�
.

(acc) Let m,n > 0.
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Then

'(m) + '(n) = 1 + · · ·+ 1| {z }
m times

+1 + · · ·+ 1| {z }
n times

= 1 + · · ·+ 1| {z }
m+n times

= '(m+ n).

'(�m) + '(�n) = �'(m)� '(n) = �
�
'(m) + '(n)

�
= �'(m+ n)

= '
�
� (m+ n)

�
= '

�
(�m) + (�n)

�
.

If m > n, '(m) + '(�n) = '(m)� '(n) = (1 + · · ·+ 1)| {z }
m times

� (1 + · · ·+ 1)| {z }
n times

= 1 + · · ·+ 1| {z }
m�n times

= '(m� n).

If m < n, '(m) + '(�n) = '(m)� '(n) = �
�
'(n)� '(m)

�

= �'(n�m) = '(m� n).

So ' is a homomorphism.
(b) Let n = char(R).

To show: (ba) nZ ✓ ker'.
(bb) ker' ✓ nZ.

First we show n 2 ker'.
By the definition of char(R),

'(n) = 1R + · · ·+ 1R| {z }
n times

= 0R.

So n 2 ker'.
(ba) Let m 2 nZ.

Then there exists k 2 Z such that m = nk.
Since ' is a homomorphism,

'(m) = '(nk) = '(n)'(k) = 0 · '(k) = 0.

So '(m) 2 ker'. So nZ ✓ ker'.
(bb) Let m 2 ker'.

Write m = nr + s with 0 6 s < n and r 2 Z.
Then, since ' is a homomorphism,

0R = '(m) = '(nr + s) = '(n)'(r) + '(s) = 0R + '(s) = 1R + · · ·+ 1R| {z }
s times

.

By definition of char(R), n is the smallest positive integer such that 1R + · · · 1R| {z }
n times

=

0R.
So s = 0.
So m = nr.
So m 2 nZ.
So ker' ✓ nZ.

So ker' = nZ.
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Proposition R.5.8. — Every proper ideal I of a ring R is contained in a maximal ideal
of R.

Proof. — The idea is to use Zorn’s lemma on the set of proper ideals of R containing I,
ordered by inclusion. We will not prove Zorn’s lemma, we will assume it. Zorn’s lemma
is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn’s Lemma. If S is a poset such that every chain in S has an upper bound
then S has a maximal element.

Let S be the set of proper ideals of R containing I, ordered by inclustion.
To show: Given a chain of ideals in S

· · · ✓ Ik�1 ✓ Ik ✓ Ik+1 ✓ · · ·
then there exists is a proper ideal J of R containing I that contains all the Ik.

Let
J =

[

k

Ik.

To show: (a) J is an ideal.
(b) J is a proper ideal.

(a) To show: (aa) If i, j 2 J then i+ j 2 J .
(ab) If i 2 J and r 2 R then ir 2 J and ri 2 J .

(aa) Assume i, j 2 J .
Then there exists k and k0 such that i 2 Ik and j 2 Ik0 .
Since either Ik ✓ Ik0 or Ik0 ✓ Ik then either i, j 2 Ik or i, j 2 Ik0 .
Since Ik and Ik0 are ideals then either i+ j 2 Ik or i+ j 2 Ik0
So

i+ j 2
[

k

Ik = J.

(ab) Assume i 2 J and r 2 R.
Then there exists k such that i 2 Ik.
Since Ik is an ideal then ri 2 Ik and ir 2 Ik.
So

ri 2
[

k

Ik = J and ir 2
[

k

Ik = J.

So J is an ideal.
(b) To show: 1 /2 J .

Since the Ik are proper ideals then 1 /2 Ik.
So

1 /2
[

k

Ik = J.

So J is a proper ideal of R.

So every chain of proper ideals in R that contain I has an upper bound.
Thus, by Zorn’s lemma, the set S of proper ideals containing I has a maximal element.
So I is contained in a maximal ideal.


