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R.5. Proofs: Rings

Proposition R.5.1. — Let R be a ring and let I be an additive subgroup of R. Then
the cosets of I in R partition R.

Proof. —
To show: (a) If r € R then there exists ' € R such that r € 7’ + I.
(b)If (ri+1)N(ro+1)#0 thenry +1=ry+ 1.
(a) Let r € R.
Thenr=r+0€&€r+1,since 0 e I.
Sorer+1.
(b) Assume (r1 +I)N (re+ 1) # 0.
To show: (ba) ry +1 Cry+ 1.
(bb) r2+1§7“1+].
Let s€ (ri +1)N(re + I).
Suppose s = 1| + 11 and s = 19 + io Where iy,i5 € I.
Then

’I"l:T1+i1—i128—l‘1:T2+i2—Z‘1 and
7”2:T2+i2—i228—i2:T1+i1—i2.
(ba) Let r € ry + 1.

Then r = r{ + ¢ for some ¢ € 1.
Then
T:T1+i:T2+i2—i1+iET2+[,
since io — 11 +1 € 1.
SOT1+[gT2+[.
(bb) Let r € ro + 1.
Then r = r9 + ¢ for some i € I.
So
TIT2+iIT1+i1—i2+iET1+[,
since i1 — iy +1 € 1.
SOT’Q—'—[ng—l—I.
SOT1+[IT2+[.
So the cosets of I in R partition R. ]

Proposition R.5.2. — Let I be an additive subgroup of a ring R. I is an ideal of R if
and only if R/I with operations given by
(ri+ D)+ (ro+1)=(ri+r)+1 and (ri+1D)(ra+1)=riro+1
18 @ 1INg.
Proof. —
—>: Assume [ is an ideal of R.

To show: (a) (r1+ 1)+ (re+1) = (r1 +19) + I is a well defined operation on R/I.
(b) (r1 4+ I)(re + 1) = (ryr2) + I is a well defined operation on R/I.
()X ri+1I,ro+I,r3+1€ R/Ithen ((ri+ 1)+ (ro+ 1)) + (rs+ 1) =
(ri+ 1)+ ((ra+ 1)+ (rs + 1))

(d)Ifry+1I,ro+1€ R/Ithen (r+ 1)+ (ro+1)=(ro+ 1)+ (r1 +1).
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() 0+ 1 =1 is the zero in R/I.

(f) —r + I is the additive inverse of r + I.

(g) fri+I,ro+Irs+1 € R/I then ((ry + I)(rs + 1))(rs + I) =
”

(ri+ D) ((ro 4+ I)(rs + 1)).

2
(h) 1+ I is the identity in R/I.
(i) Ifri+1, 7o+ 1, r3+ 1€ R/I then

)
(ri+ D) ((ro+ 1)+ (rs+ 1)) =(ri+1)(ra+ 1)+ (ri+1)(rs+ 1) and
(ro+ 1)+ (rs+ D) (r1+1) = (ro+ I)(r1 + 1) + (rs + 1) (1 + I).
(a) We want the operation on R/I given by

R/IxR/I —  R/I
(r+1,s+1) — (r+s)+1

to be well defined, i.e. a function.

Let (r14+1, s1+1), (ro+1,s90+1) € R/IxR/I such that (r1+1, s1+1) = (ro+1, so+1).
Thenry +1 =ry+ 1 and s; +1 = s5 + 1.

To show: (r1 4+ s1) +1 = (12 + s2) + 1.

So we must show: (aa) (11 +s1) +1 C (12 + s2) + I.

(aa)

(ab) (ro+s2) +1 C (11 +s1) + 1.
Sincery +1=ry+Ithenri=ri+0€ry+1
So there exists k1 € I such that vy = ro + ky.
Similarly, there exists ko € I such that s; = so + ko.
Let t € (11 +s1) + 1.
Then there exists k € I such that t =r; + s1 + k.
So

t:Tl+81+l{3:T2+k1+82+k’2—|—]€:T2+52+]€1+/€2+]{3,

since addition is commutative.

Sot= (T2+82)+(k’1+k2+k) Erg+s9+ 1.

So (T1+81)+Ig (7’2+82)+I.

Since r1 + I = ry + I then there exists k; € I such that r; + k; = ro.
Since s; + I = s9 + I then there exists ky € I such that s; + ky = s9.
Let t € (rg + s2) + 1.

Then there exists k € I such that t = r9 + sy + k.

So

t:’l”2—|-82+k3:7’1+k’1+81+k’2+k‘:7"1+S1+l€1+k52+k,

since addition is commutative.
Sot=(r1+s1)+ (ki +ka+ k)€ (r1+s1)+ 1.
So (ro+s2) +1 C (r +s1) + 1.

So (r1+ss) +1 = (ra+ s2) + 1.

So the operation given by (r1+1)+ (ro+1) = (r1+r2)+1 is a well defined operation
on R/I.
(b) We want the operation on R/I given by

R/IxR/I — R/I
(r+I,s+1) — (rs)+1

to be well defined, i.e. a function.
Let (41, s1+1), (ro+1,s0+1) € R/IxR/I such that (r+1, s1+1) = (ro+1, so+1).
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Thenri+1 =ry+ 1 and so+ 1 = 59 + 1.
To show: 7181 + 1 = resq + 1.
So we must show: (ba) ris; + 1 C rose + 1.
(bb) ro89 + 1 Crysy + 1.
(ba) Since r; + I = ro + I, there exists ky € I such that r; = ry + k.
Since s; + I = sy + I, there exists ko € I such that s; = s9 + ko.
Let t € ris1 + 1.
Then there exists k € I such that ¢t = r;s; + k.
So

t:r151 +l€: (T2+k1)<82+/€2) +k :T282+k182+7’2k2+k1/€2+k,

by using the distributive law.
k1S9 + roko + k1ko + k € I by the definition of ideal.
Sot € rysy+ 1.
So r181 +1 C rose + 1.
(bb) Since 1 + I =7y + I, there exists k; € I such that ry + k; = 7.
Since s; + I = so + I, there exists ko € I such that s; + ko = ss.
Let t € 7’282+I.
Then there exists k € I such that ¢t = rys9 + k.
So

t = 9859 + k’ = (7“1 + kl)(sl + k‘z) + k’ =T151 + 7“1]{52 + k‘181 + k’lk‘z + k,

by using the distributive law.
By the definition of ideal, r1ks + k151 + k1ks + k € 1.
Soteris,+1.
So 1989 +1 Crysy + 1.
So risy + 1 =1rysy + 1.
So the operation given by (r 4+ I)(s + I) = rs + I is a well defined operation on
R/I.
(c) By the associativity of addition in R and the definition of the operation in R/I, if
7’1-|—[,7’2+[,7’3+I € R/I then

(m+D+ e+ D)+ s+ = ((ri+r)+1)+(rs+1)
= ((ri4mr)+r3) +1
(T1+ T2+7’3)+I
T1+I) ((7‘24—7“3)4-[)

= (
=(r+D)+ ((re+ 1)+ (rs + 1))

(d) By the commutativity of addition in R and the definition of the operation in R/I,
if ry+ 1,79+ 1€ R/I then

(ri+1)+(ro+1)=(r1+r) +1
=(ro+m)+1
=(ro+ 1)+ (ri+1)
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(e) The coset I =0+ [ is the zero in R/ since if r + I € R/I then
I+(r+0)=0+r)+1
=r+1
=(r4+0)+I=r+I1)+1.
(f) Given any coset r + I, its additive inverse is (—r) + I since if r + I € R/I then
(r+D+(-r+0)=r+(-r)+1
=0+1
=1
=(—r+r)+1
=(—r+D)+(r+1)
(g) By the associativity of multiplication in R and the definition of the operation in
R/I,ifri+1I,ro+ 1,73+ 1 € R/I then
(ri+1)(ra+ D) (rs+ 1) = (rire + 1) (rs + 1)
= (rirg)rs + 1
=ri(rorg) + 1
=(r1+I)(rers + 1)
=(ri+1)((ra+1)(rs + 1))
(h) The coset 1+ I is the identity in R/ since if r + I € R/I then
A+Dr+1)=1-r+1
=r+1
=r-141
=(r+0(1+1).
(i) Assume r,s,t € R. Then by definition of the operations
r+D((s+D+t+1)=r+D((s+t)+1)
r(s+1t)+1
=(rs+rt)+1
=(rs+1)+ (rt+1)
=@+DE+)+(r+1)Et+1),
and
(s+D+@E+D)r+1)=((s+t)+1)(r+1)
=(s+t)r+1
= (sr+tr)+1
=(sr+1)+(tr+1)
=(s+Dr+D)+t+D)(r+1).
So R/I is a ring.
<=: Assume R/I is a ring with operations given by
(r+0)+(s+I)=(r+s)+I and (r+1)(s+1)=rs+1, forr+1,s+1¢€ R/I.
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To show: If Kk € [ and r € R then kr € I and rk € 1.
First we show: If £k € I then k+ 1 = 1.
To show: (a) k+ 1 C I.
(b I Ck+1.
(a) Let i € k+ 1.
Then there exists k; € I such that i = k + £;.
Then, since [ is a subgroup, ¢t = k + k; € [.
Sok+1CI.
(b) Assume k; € 1.
Sincek:l—k:E], ]Clzk?—l—(k?l—k) Ek?+]
Sol Ck+1.
Now assume r € R and k € I.
Then by definition of the operation

rk+1=(r+I1)(k+1)
=(r+ DI
=(r+10)0+1)
=0+1

1

and
kr+1=(k+1)(r+1)

=0+)(r+1)
=041
=1.
So kr € I and rk € I.
So I is an ideal of R. O

Proposition R.5.3. — Let f: R — S be a ring homomorphism. Let Og and Og be the
zeros for R and S respectively. Then

(a) f(Og) = 0s.
(b) If r € R then f(—r) = —f(r).

Proof. —  (a) Add —f(0g) to each side of the following equation.
f(Or) = f(Or + 0r) = f(Or) + f(Or).
(b) Since
f)+ f(=r)=f(r+(-r)) = f(0r) =0s and
f(=r)+ f(r) = f((=r) +7) = f(0r) = Os,
then f(—r) = —f(r).

Proposition R.5.4. — Let f: R — S be a ring homomorphism. Then
(a) ker f is an ideal of R.
(b) imf is a subring of S.

Proof. — Let Og and 0g be the zeros of R and S respectively.
(a) To show: ker f is an ideal of R.
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To show: (aa) If ki, ks € ker f then ky + ko € ker f.
(ab) Og € ker f.
(ac) If k € ker f then —k € ker f.
(ad) If k € ker f and r € R then kr € ker f and rk € ker f.
(aa) Assume ky, ky € ker f.
Then f(k1) = 05 and f(kq2) = Os.
So f(k’l + l{fg) = f(k?l) + f(k’g) = 05.
So ki + ko € ker f.
(ab) Since f(0r) = 0g, Or € ker f.
(ac) Assume k € ker f.

So f(k) = OS-
Then
f(=k) = —f(k) = 0s
So —k € ker f.
(ad) Assume k € ker f and r € R.
Then

flkr) = f(k)f(r) =0s- f(r) =0s and
f(rk) = f(r)f(k) = f(r) - 0s = Os.

So kr € ker f and rk € ker f.
So ker f is an ideal of R.
(b) To show: (ba) If s1,s9 € imf then s; + s € imf.
b) Og € imf.
¢) If s € imf then —s € imf.
d) If s1,89 € imf then s;s9 € imf.
(be) lg € imf.
(ba) Assume s1, sy € imf. Then s; = f(r1) and ss = f(rg) for some 1,75 € R.
Then

(b
(b
(b

81+ 82 = f(r1) + f(r2) = f(r1 +12),

since f is a homomorphism.
So s1 + s9 € imf.
(bb) By Proposition R.1.1(a), f(0g) = Og.
So 0g € imf.
(bc) Assume s € imf. Then s = f(r) for some r € R.
Then, by Proposition R.1.1(b),

So —s € imf.

(bd) Assume s1, sy € imf.
Then there exists ry, 7y € R such that s; = f(r1) and so = f(r2).
Since f is a homomorphism then

5153 = f(r1) f(r2) = f(rira),

So s159 € imf.
(be) By the definition of ring homomorphism, f(1g) = 15 and so 1g € imf.
So imf is a subring of S.
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Proposition R.5.5. — Let f: R — S be a ring homomorphism.
Let Op be the zero in R. Then

(a) ker f = {0gr} if and only if f is injective.

(b) imf = S if and only if [ is surjective.

Proof. —

(a) Let O and Og be the zeros in R and S respectively.
—>: Assume ker f = (Og).
To show: If f(r1) = f(r2) then r; = ry.
Assume f(ry) = f(r2).
Then, by the fact that f is a homomorphism,

Os = f(r1) = f(r2) = f(ri —r2).
So r; —ry € ker f.
But ker f = (0g).
So rn —T9 = OR.
So r; = 7o.
So f is injective.
<=: Assume f is injective.
To show: (aa) (0g) C ker f.
(ab) ker f C (Og).
(aa) Since f(0g) = 0g, O € ker f.
So (03) - ker f
(ab) Let k € ker f.
Then f(k) = 0g.
So £(k) = £(0r).
Thus, since f is injective, k = Og.
So ker f C (0g).
So ker f = (Og).
(b) =: Assume im f = S.
To show: If s € S then there exists r € R such that f(r) = s.
Assume s € S.
Then s € imf.
So there exists r € R such that f(r) = s.
So f is surjective.
<=: Assume f is surjective.
To show: (a) im f C S.
(b) S Cim f.
(a) Let z € im f.
Then there exists r € R such that z = f(r).
By the definition of f, f(r) € S.
Sox € S.
Soimf C §S.
(b) Assume z € S.
Since f is surjective there exists r € R such that f(r) = x.
Soz €im f.
So S Cim f.
Soim f = S.
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Theorem R.5.6. —
(a) Let f: R — S be a ring homomorphism and let K = ker f. Define

f: R/kerf — S
r+ K +—  f(r).

Then f is a well defined injective ring homomorphism.
(b) Let f: R— S be a ring homomorphism and define

f'* R — imf
r o= f(r).
Then " is a well defined surjective ring homomorphism.
(c¢) If f: R — S is a ring homomorphism, then

R/ker f ~imf
where the isomorphism is a ring isomorphism.

Proof. — Let 1z and 1g be the identities in R and S respectively.

~

(a) To show: (aa) f is well defined.

(ab) f is injective.
(ac) f is a ring homomorphism.
(aa) To show: (aaa) If r € R then f(r + K) € S.
(aab) If ry + K = ry + K € R/K then f(ri + K) = f(ry + K).

(aaa) Assume r € R.

Then f(r + K) = f(r), and f(r) € S, by the definition of fand f.
(aab) Assume r; + K =ry + K.

Then ry =ry+ k for some k € K.

To show: f(r1 + K) = f(re + K), i.e.,

To show: f(r1) = f(r2).

Since k € ker f, we have f(k) =0 and so

flr1) = flra+k) = f(r2) + f(k) = f(r2) + 0 = f(ra).

So f(r1+ K) = f(re + K).
So f is well defined.
(ab) To show: If f(r; + K) = f(ry + K) then r; + K =1, + K.
Assume f(r + K) = f(ry + K).
Then f(r1) = f(r2).
So f(r1) — f(r2) = 0.
So f(’f’l — 7”2) = 0.
So r; —1ry € ker f.
So there exists k € ker f such that ry —ry = k.
So there exists k € ker f such that ry =ry + k.
To show: (aba) r1 + K Cry+ K.
(abb) o+ K Cr + K.
(aba) Let r € r; + K.
Then there exists k1 € K such that r = ry + k.
Sincek+k € Kthenr=rqo+k+k €ry+ K
So T1+K§T’2+K.
(abb) Let r € ry + K.
Then there exists ky € K such that r = ry + ko, for some ky € K.
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Since —k+kye Kthenr=ry+ko=7r —k+ ks €r; + K.
SO7"2+KQ7°1+K.
SOT1+K:T2+K.
So f is injective.
(ac) To show: (aca) If r + K,ro + K € R/K then f((rl + k) + (r + K)) =
flri+ K)+ f(r: + K). ) )
(acb) If r1 + K,ro+ K € R/K then f((r1 + K)(rs + K)) = f(r1 +
K)f(rs + K). )
(acc) f(lg + K) = 1s.
(aca) Let r1 + K,ro+ K € R/K.
Since f is a homomorphism,

Fr+EK)+f(ra+K) = f(r)+f(rs) = f(ri+r) = f((T1+7“2)+K) = f((T1+K)+(7“2+K))-

(acb) Let ri + K,ry+ K € R/K.
Since f is a homomorphism,

flri+ K) f(rs+ K) = f(r1)f(r2) = f(rira) = f(rirs + K) = f((r1 + K)(r2 + K)).

(acc) Since f is a homomorphism,

A

f(lr+ K) = f(1r) = 1s.

So f is a ring homomorphism.
So f is a well defined injective ring homomorphism.
(b) Let 1 and 1g be the identities in R and S respectively.
To show: (ba) f is well defined.
(bb) f is surjective.
(be) f'is a ring homomorphism.
(ba) and (bb) are proved in Ex. 2.2.4 a) and b), Part .LFIX THIS UPFIX THIS
UP FIX
(bc) To show: (bca) If 71,79 € R then f'(ry + re) = f'(r1) + f'(re). (bcb) If
r1,72 € R then f'(rire) = f'(r1) f'(r2).
(bee) f'(1g) = 1s.
(bca) Let ry,7m9 € R.
Then, since f is a homomorphism,

firi4ra) = f(ri+re) = f(r1) + fr2) = f/(r) + f'(r2).

(beb) Let ri,7m € R.
Then, since f is a homomorphism,

f’(7“17"2) = f(rir2) = f(r1)f(r2) = f’(ﬁ)f’(ﬁ)-

(bee) Since f is a homomorphism,

f'(1r) = f(1g) = 1s.

So f" is a homomorphism.
So f"is a well defined surjective ring homomorphism.

(c) Let K =ker f.



R.5. PROOFS: RINGS 73

By (a), the function
f: R/IK — S
r+ K —  f(r)
is a well defined injective ring homomorphism.
By (b), the function

f: R/K —  imf
r+K — fir+K)=f(r)

is a well defined surjective ring homomorphism.

To show: imf =im f.
(cb) f is injective.

(ca) To show: (caa) im f C im f.

(cab) im f C im f.
(caa) Let s € imf.

Then there exists r + K € R/K such that f(r + K) = s.
Let v e r+ K.
Then there exists k € K such that r' =r + k.
Since f is a homomorphism and f(k) = 0 then

f)y=fr+k)=f(r)+ flk)=f(r)=f(r+k)=s.
So s €im f.
So imf Cimf.
(cab) Let s € im f.
Then there exists » € R such that f(r) = s.
So f(r+K) = f(r) =s.
So s € imf.
So imf C imf.
So imf = imf.
(cb) To show: If f’(rl + K) = f’(r2 + K) then r; + K =ry + K.
Assume f'(r + K) = f'(ry + K).
Then f(ry + K) = f(ry + K).
Since f is injective then 7 + K = 1y + K.
So f' is injective.
Thus
f'© R/K — imf
r+ K — f(r)
is a well defined bijective ring homomorphism.

O

Proposition R.5.7. — Let R be a ring. Let Op and 1i be the zero and the identity in
R respectively.
(a) There is a unique ring homomorphism ¢: Z — R given by

QO(O> = OR?
gp(m)le—l—---—l—lR, and
~—_——

m times

p(=m) = —p(m),  form € Zs,.
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(b) ker p = nZ = {nk | k € Z} where n = char(R) is the characteristic of the ring R.

Proof. — Let 1x and O be the identity and zero of the ring R.

(a) Define ¢: Z — R by defining, for m € Z-o,

@(m):1R++1R7
————
m times

(R.5.1) p(—m) = —p(m),
©(0) = Or.

To show: (aa) ¢ is unique.
(ab) ¢ is well defined, i.e. a function.
(ac) ¢ is a homomorphism.
(aa) To show: If ¢': Z — R is a homomorphism then ¢’ = .
Assume ¢': Z — R is a homomorphism.
To show: If m € Z then ¢'(m) = p(m).
If m =1 then ¢'(1) = 1z = ¢(1).

If m > 0 then
em) =1+ +1)=¢ 1)+ +¢(1)=1lg+---+ 15 = p(m).

m times m times m times

If m =0 then ¢'(0) = 0r = (0).
(ab) Since Z = Z~o U {0} U —=Z-( and the right hand side of each expression in
(R.5.1) is an element of R then ¢ is a fucntion.
(ac) To show: (aca) ¢(1) = 1g.
(acb) @(mn) = p(m)p(n).
(acc) o(m +n) = p(m) + ¢(n).
(aca) This follows from the definition of .
(acb) Let m,n > 0. Then, by the distributive law,

m times n times mn times

p(—m)p(n) = —p(m)p(n) = (—1r)e(m)p(n) = (—1r)e(mn) = —p(mn) = ((—m)n).
@(—=m)p(—n) = (=1gr)p(m)(=1)rp(n) = p(m)p(n) = p(mn) = o((=m)(—n)).

(acc) Let m,n > 0.
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Then
e(m)+en)=1+---+14+14+---F+1=1+---+1=¢(m+n).

TV
m times n times m-+n times

p(—m) + p(—n) = —p(m) — o(n) = —(p(m) + p(n)) = —p(m +n)
o(— (m+n)) =¢((—m) + (—n)).

m > n, o(m) + p(—n) = p(m) —p(n) = 1+ +1) = (1+ -+ 1)

.

vV VvV
m times n times

T —n).
+ -+ o(m —n)

m—n times

If m < n, p(m) +¢(=n) = p(m) — p(n) = —(p(n) — p(m))
— —o(n—m) = pm ).

So ¢ is a homomorphism.
(b) Let n = char(R).
To show: (ba) nZ C ker .
(bb) ker ¢ C nZ.
First we show n € ker ¢.
By the definition of char(R),

p(n) =1p+ -+ 1 =0r.
—_——

n times

So n € ker .

(ba) Let m € nZ.
Then there exists k € Z such that m = nk.
Since ¢ is a homomorphism,

p(m) = p(nk) = p(n)p(k) =0-p(k) =0.

So p(m) € ker p. So nZ C ker .

(bb) Let m € ker ¢.
Write m=nr+swithO0O<s<nandre€Z.
Then, since ¢ is a homomorphism,

Or = @(m) = p(nr +s) = p(n)p(r) + ¢(s) =0r +¢(s) = lg + -+ 1g.

s times

By definition of char(R), n is the smallest positive integer such that 1z +--- 15 =
—_——

n times

Og.

So s = 0.

So m = nr.

So m € nZ.

So ker p C nZ.

So ker ¢ = nZ. O
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Proposition R.5.8. — Fvery proper ideal I of a ring R is contained in a mazimal ideal
of R.
Proof. — The idea is to use Zorn’s lemma on the set of proper ideals of R containing I,

ordered by inclusion. We will not prove Zorn’s lemma, we will assume it. Zorn’s lemma
is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn’s Lemma. If S is a poset such that every chain in S has an upper bound
then S has a maximal element.

Let S be the set of proper ideals of R containing I, ordered by inclustion.
To show: Given a chain of ideals in S

v Clpy © I C Iy © -

then there exists is a proper ideal J of R containing I that contains all the Ij.

Let

J:Uh.
k

To show: (a) J is an ideal.
(b) J is a proper ideal.
(a) To show: (aa) If 4,j € J then i+ j € J.
(ab) If i € J and r € R then ir € J and ri € J.
(aa) Assume i,j € J.
Then there exists k& and &’ such that ¢ € I and j € I}.
Since either I, C I}, or Iy C I then either ¢,7 € I, or i,j € Iy
Since I}, and [/ are ideals then either 1 +j € [y or 1 + j € I
So

itjeJ=1
k

(ab) Assume ¢ € J and r € R.
Then there exists k such that ¢ € I.
Since [j is an ideal then ri € I, and ir € I}.
So
rie|Jliv=1J and ire|JL=1
k k

So J is an ideal.
(b) To show: 1 ¢ J.
Since the [ are proper ideals then 1 ¢ I}.

So
1¢|Jn=1
k

So J is a proper ideal of R.
So every chain of proper ideals in R that contain I has an upper bound.
Thus, by Zorn’s lemma, the set S of proper ideals containing I has a maximal element.
So I is contained in a maximal ideal. O



