R.5. Proofs: Rings

Proposition R.5.1. — Let R be a ring and let I be an additive subgroup of R. Then the cosets of I in R partition R.

Proof. — To show: (a) If $r \in R$ then there exists $r' \in R$ such that $r \in r' + I$. (b) If $(r_1 + I) \cap (r_2 + I) \neq \emptyset$ then $r_1 + I = r_2 + I$. (a) Let $r \in R$. Then $r = r + 0 \in r + I$, since $0 \in I$. So $r \in r + I$. (b) Assume $(r_1 + I) \cap (r_2 + I) \neq \emptyset$. To show: (ba) $r_1 + I \subseteq r_2 + I$. (bb) $r_2 + I \subseteq r_1 + I$. Let $s \in (r_1 + I) \cap (r_2 + I)$. Suppose $s = r_1 + i_1$ and $s = r_2 + i_2$ where $i_1, i_2 \in I$. Then $r_1 = r_1 + i_1 - i_1 = s - i_1 = r_2 + i_2 - i_1$ and $r_2 = r_2 + i_2 - i_2 = s - i_2 = r_1 + i_1 - i_2.$ (ba) Let $r \in r_1 + I$. Then $r = r_1 + i$ for some $i \in I$. Then $r = r_1 + i = r_2 + i_2 - i_1 + i \in r_2 + I$ since $i_2 - i_1 + i \in I$. So $r_1 + I \subseteq r_2 + I$. (bb) Let $r \in r_2 + I$. Then $r = r_2 + i$ for some $i \in I$. So $r = r_2 + i = r_1 + i_1 - i_2 + i \in r_1 + I$ since $i_1 - i_2 + i \in I$. So $r_2 + I \subseteq r_1 + I$. So $r_1 + I = r_2 + I$.

So the cosets of I in R partition R.

Proposition R.5.2. — Let I be an additive subgroup of a ring R. I is an ideal of R if and only if R/I with operations given by

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$
 and $(r_1 + I)(r_2 + I) = r_1r_2 + I$

is a ring.

 $\begin{array}{l} Proof. \\ \implies: \text{ Assume } I \text{ is an ideal of } R. \end{array}$

To show: (a)
$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$
 is a well defined operation on R/I .
(b) $(r_1 + I)(r_2 + I) = (r_1r_2) + I$ is a well defined operation on R/I .
(c) If $r_1 + I, r_2 + I, r_3 + I \in R/I$ then $((r_1 + I) + (r_2 + I)) + (r_3 + I) = (r_1 + I) + ((r_2 + I) + (r_3 + I))$
(d) If $r_1 + I, r_2 + I \in R/I$ then $(r_1 + I) + (r_2 + I) = (r_2 + I) + (r_1 + I)$.

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

$$\begin{array}{l} (e) \ 0+I=I \ \text{is the zero in } R/I. \\ (f) \ -r+I \ \text{is the additive inverse of } r+I. \\ (g) \ \text{If } r_1+I, r_2+I, r_3+I \ \in \ R/I \ \text{then } \left((r_1+I)(r_2+I)\right)(r_3+I) = \\ (r_1+I)\big((r_2+I)(r_3+I)\big). \\ (h) \ 1+I \ \text{is the identity in } R/I. \\ (i) \ \text{If } r_1+I, \ r_2+I, \ r_3+I \in R/I \ \text{then} \\ (r_1+I)\big((r_2+I)+(r_3+I)\big) = (r_1+I)(r_2+I) + (r_1+I)(r_3+I) \quad \text{and} \\ (r_2+I)+(r_3+I)\big)(r_1+I) = (r_2+I)(r_1+I) + (r_3+I)(r_1+I). \end{array}$$

(a) We want the operation on R/I given by

$$\begin{array}{rrr} R/I \times R/I & \to & R/I \\ (r+I,s+I) & \mapsto & (r+s)+I \end{array}$$

to be well defined, i.e. a function. Let $(r_1+I, s_1+I), (r_2+I, s_2+I) \in R/I \times R/I$ such that $(r_1+I, s_1+I) = (r_2+I, s_2+I).$ Then $r_1 + I = r_2 + I$ and $s_1 + I = s_2 + I$. To show: $(r_1 + s_1) + I = (r_2 + s_2) + I$. So we must show: (aa) $(r_1 + s_1) + I \subseteq (r_2 + s_2) + I$. (ab) $(r_2 + s_2) + I \subseteq (r_1 + s_1) + I$. (aa) Since $r_1 + I = r_2 + I$ then $r_1 = r_1 + 0 \in r_2 + I$ So there exists $k_1 \in I$ such that $r_1 = r_2 + k_1$. Similarly, there exists $k_2 \in I$ such that $s_1 = s_2 + k_2$. Let $t \in (r_1 + s_1) + I$. Then there exists $k \in I$ such that $t = r_1 + s_1 + k$. So $t = r_1 + s_1 + k = r_2 + k_1 + s_2 + k_2 + k = r_2 + s_2 + k_1 + k_2 + k,$ since addition is commutative. So $t = (r_2 + s_2) + (k_1 + k_2 + k) \in r_2 + s_2 + I$. So $(r_1 + s_1) + I \subseteq (r_2 + s_2) + I$. (ab) Since $r_1 + I = r_2 + I$ then there exists $k_1 \in I$ such that $r_1 + k_1 = r_2$. Since $s_1 + I = s_2 + I$ then there exists $k_2 \in I$ such that $s_1 + k_2 = s_2$. Let $t \in (r_2 + s_2) + I$. Then there exists $k \in I$ such that $t = r_2 + s_2 + k$. So $t = r_2 + s_2 + k = r_1 + k_1 + s_1 + k_2 + k = r_1 + s_1 + k_1 + k_2 + k$ since addition is commutative. So $t = (r_1 + s_1) + (k_1 + k_2 + k) \in (r_1 + s_1) + I$. So $(r_2 + s_2) + I \subseteq (r_1 + s_1) + I$. So $(r_1 + s_s) + I = (r_2 + s_2) + I$. So the operation given by $(r_1+I)+(r_2+I)=(r_1+r_2)+I$ is a well defined operation on R/I. (b) We want the operation on R/I given by

$$\begin{array}{rrr} R/I \times R/I & \rightarrow & R/I \\ (r+I,s+I) & \mapsto & (rs)+I \end{array}$$

to be well defined, i.e. a function.

Let $(r_1+I, s_1+I), (r_2+I, s_2+I) \in R/I \times R/I$ such that $(r_1+I, s_1+I) = (r_2+I, s_2+I)$.

Then $r_1 + I = r_2 + I$ and $s_2 + I = s_2 + I$. To show: $r_1s_1 + I = r_2s_2 + I$. So we must show: (ba) $r_1s_1 + I \subseteq r_2s_2 + I$. (bb) $r_2 s_2 + I \subseteq r_1 s_1 + I$. (ba) Since $r_1 + I = r_2 + I$, there exists $k_1 \in I$ such that $r_1 = r_2 + k_1$. Since $s_1 + I = s_2 + I$, there exists $k_2 \in I$ such that $s_1 = s_2 + k_2$. Let $t \in r_1 s_1 + I$. Then there exists $k \in I$ such that $t = r_1 s_1 + k$. So $t = r_1 s_1 + k = (r_2 + k_1)(s_2 + k_2) + k = r_2 s_2 + k_1 s_2 + r_2 k_2 + k_1 k_2 + k_1,$ by using the distributive law. $k_1s_2 + r_2k_2 + k_1k_2 + k \in I$ by the definition of ideal. So $t \in r_2 s_2 + I$. So $r_1s_1 + I \subseteq r_2s_2 + I$. (bb) Since $r_1 + I = r_2 + I$, there exists $k_1 \in I$ such that $r_1 + k_1 = r_2$. Since $s_1 + I = s_2 + I$, there exists $k_2 \in I$ such that $s_1 + k_2 = s_2$. Let $t \in r_2 s_2 + I$. Then there exists $k \in I$ such that $t = r_2 s_2 + k$. So

$$t = r_2 s_2 + k = (r_1 + k_1)(s_1 + k_2) + k = r_1 s_1 + r_1 k_2 + k_1 s_1 + k_1 k_2 + k,$$

by using the distributive law. By the definition of ideal, $r_1k_2 + k_1s_1 + k_1k_2 + k \in I$. So $t \in r_1s_1 + I$. So $r_2s_2 + I \subseteq r_1s_1 + I$.

So $r_1s_1 + I = r_2s_2 + I$. So the operation given by (r + I)(s + I) = rs + I is a well defined operation on R/I.

(c) By the associativity of addition in R and the definition of the operation in R/I, if $r_1 + I, r_2 + I, r_3 + I \in R/I$ then

$$((r_1 + I) + (r_2 + I)) + (r_3 + I) = ((r_1 + r_2) + I) + (r_3 + I)$$
$$= ((r_1 + r_2) + r_3) + I$$
$$= (r_1 + (r_2 + r_3)) + I$$
$$= (r_1 + I) + ((r_2 + r_3) + I)$$
$$= (r_1 + I) + ((r_2 + I) + (r_3 + I))$$

(d) By the commutativity of addition in R and the definition of the operation in R/I, if $r_1 + I$, $r_2 + I \in R/I$ then

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$

= $(r_2 + r_1) + I$
= $(r_2 + I) + (r_1 + I)$

(e) The coset I = 0 + I is the zero in R/I since if $r + I \in R/I$ then

$$I + (r + I) = (0 + r) + I$$

= r + I
= (r + 0) + I = (r + I) + I.

(f) Given any coset r + I, its additive inverse is (-r) + I since if $r + I \in R/I$ then

$$(r + I) + (-r + I) = r + (-r) + I$$

= 0 + I
= I
= $(-r + r) + I$
= $(-r + I) + (r + I)$

(g) By the associativity of multiplication in R and the definition of the operation in R/I, if $r_1 + I, r_2 + I, r_3 + I \in R/I$ then

$$((r_1 + I)(r_2 + I))(r_3 + I) = (r_1r_2 + I)(r_3 + I)$$

= $(r_1r_2)r_3 + I$
= $r_1(r_2r_3) + I$
= $(r_1 + I)(r_2r_3 + I)$
= $(r_1 + I)((r_2 + I)(r_3 + I))$

(h) The coset 1 + I is the identity in R/I since if $r + I \in R/I$ then

$$(1+I)(r+I) = 1 \cdot r + I$$

= $r + I$
= $r \cdot 1 + I$
= $(r+I)(1+I)$.

(i) Assume
$$r, s, t \in R$$
. Then by definition of the operations
$$(r + I)((s + I) + (t + I)) = (r + I)((s + t) + I)$$

$$(r+I)((s+I) + (t+I)) = (r+I)((s+t) + I)$$

= $r(s+t) + I$
= $(rs+rt) + I$
= $(rs+I) + (rt+I)$
= $(r+I)(s+I) + (r+I)(t+I),$

and

$$((s+I) + (t+I))(r+I) = ((s+t) + I)(r+I) = (s+t)r + I = (sr + tr) + I = (sr + I) + (tr + I) = (s+I)(r+I) + (t+I)(r+I).$$

So R/I is a ring.

 $\begin{array}{ll} \longleftarrow: \text{ Assume } R/I \text{ is a ring with operations given by} \\ (r+I) + (s+I) = (r+s) + I \quad \text{and} \quad (r+I)(s+I) = rs + I, \qquad \text{for } r+I, s+I \in R/I. \end{array}$

To show: If $k \in I$ and $r \in R$ then $kr \in I$ and $rk \in I$. First we show: If $k \in I$ then k + I = I. To show: (a) $k + I \subseteq I$. (b) $I \subseteq k + I$. (a) Let $i \in k + I$. Then there exists $k_1 \in I$ such that $i = k + k_1$. Then, since I is a subgroup, $i = k + k_1 \in I$. So $k + I \subseteq I$. (b) Assume $k_1 \in I$. Since $k_1 - k \in I$, $k_1 = k + (k_1 - k) \in k + I$. So $I \subseteq k + I$.

Now assume $r \in R$ and $k \in I$. Then by definition of the operation

$$rk + I = (r + I)(k + I)$$
$$= (r + I)I$$
$$= (r + I)(0 + I)$$
$$= 0 + I$$
$$= I$$

and

$$kr + I = (k + I)(r + I)$$
$$= (0 + I)(r + I)$$
$$= 0 + I$$
$$= I.$$

So $kr \in I$ and $rk \in I$. So I is an ideal of R.

Proposition R.5.3. — Let $f: R \to S$ be a ring homomorphism. Let 0_R and 0_S be the zeros for R and S respectively. Then

(a) $f(0_R) = 0_S$.

(b) If $r \in R$ then f(-r) = -f(r).

Proof. — (a) Add $-f(0_R)$ to each side of the following equation.

$$f(0_R) = f(0_R + 0_R) = f(0_R) + f(0_R).$$

(b) Since

$$f(r) + f(-r) = f(r + (-r)) = f(0_R) = 0_S \text{ and}$$
$$f(-r) + f(r) = f((-r) + r) = f(0_R) = 0_S,$$
then $f(-r) = -f(r).$

Proposition R.5.4. — Let $f: R \to S$ be a ring homomorphism. Then (a) ker f is an ideal of R.

(b) $\inf f$ is a subring of S.

Proof. — Let 0_R and 0_S be the zeros of R and S respectively.

(a) To show: ker f is an ideal of R.

To show: (aa) If $k_1, k_2 \in \ker f$ then $k_1 + k_2 \in \ker f$. (ab) $0_R \in \ker f$. (ac) If $k \in \ker f$ then $-k \in \ker f$. (ad) If $k \in \ker f$ and $r \in R$ then $kr \in \ker f$ and $rk \in \ker f$. (aa) Assume $k_1, k_2 \in \ker f$. Then $f(k_1) = 0_S$ and $f(k_2) = 0_S$. So $f(k_1 + k_2) = f(k_1) + f(k_2) = 0_S$. So $k_1 + k_2 \in \ker f$. (ab) Since $f(0_R) = 0_S, 0_R \in \ker f$. (ac) Assume $k \in \ker f$. So $f(k) = 0_S$. Then $f(-k) = -f(k) = 0_S.$ So $-k \in \ker f$. (ad) Assume $k \in \ker f$ and $r \in R$. Then $f(kr) = f(k)f(r) = 0_S \cdot f(r) = 0_S$ and $f(rk) = f(r)f(k) = f(r) \cdot 0_S = 0_S.$ So $kr \in \ker f$ and $rk \in \ker f$. So ker f is an ideal of R. (b) To show: (ba) If $s_1, s_2 \in \inf f$ then $s_1 + s_2 \in \inf f$. (bb) $0_S \in \operatorname{im} f$. (bc) If $s \in \operatorname{im} f$ then $-s \in \operatorname{im} f$. (bd) If $s_1, s_2 \in \inf f$ then $s_1 s_2 \in \inf f$. (be) $1_S \in \operatorname{im} f$. (ba) Assume $s_1, s_2 \in \inf f$. Then $s_1 = f(r_1)$ and $s_2 = f(r_2)$ for some $r_1, r_2 \in R$. Then $s_1 + s_2 = f(r_1) + f(r_2) = f(r_1 + r_2),$ since f is a homomorphism. So $s_1 + s_2 \in \operatorname{im} f$.

- (bb) By Proposition R.1.1(a), $f(0_R) = 0_S$. So $0_S \in \text{im} f$.
- (bc) Assume $s \in \inf f$. Then s = f(r) for some $r \in R$. Then, by Proposition R.1.1(b),

$$-s = -f(r) = f(-r).$$

So $-s \in \operatorname{im} f$.

(bd) Assume $s_1, s_2 \in \operatorname{im} f$. Then there exists $p_1, p_2 \in B$ such

Then there exists $r_1, r_2 \in R$ such that $s_1 = f(r_1)$ and $s_2 = f(r_2)$. Since f is a homomorphism then

$$s_1s_2 = f(r_1)f(r_2) = f(r_1r_2)$$

So $s_1 s_2 \in \operatorname{im} f$.

(be) By the definition of ring homomorphism, $f(1_R) = 1_S$ and so $1_S \in \text{im} f$. So im f is a subring of S.

Proposition R.5.5. — Let $f: R \to S$ be a ring homomorphism. Let 0_R be the zero in R. Then (a) ker $f = \{0_R\}$ if and only if f is injective. (b) $\inf f = S$ if and only if f is surjective. Proof. — (a) Let 0_R and 0_S be the zeros in R and S respectively. \implies : Assume ker $f = (0_R)$. To show: If $f(r_1) = f(r_2)$ then $r_1 = r_2$. Assume $f(r_1) = f(r_2)$. Then, by the fact that f is a homomorphism, $0_S = f(r_1) - f(r_2) = f(r_1 - r_2).$ So $r_1 - r_2 \in \ker f$. But ker $f = (0_S)$. So $r_1 - r_2 = 0_R$. So $r_1 = r_2$. So f is injective. \Leftarrow : Assume f is injective. To show: (aa) $(0_R) \subseteq \ker f$. (ab) ker $f \subseteq (0_R)$. (aa) Since $f(0_R) = 0_S, 0_R \in \ker f$. So $(0_R) \subseteq \ker f$. (ab) Let $k \in \ker f$. Then $f(k) = 0_S$. So $f(k) = f(0_R)$. Thus, since f is injective, $k = 0_R$. So ker $f \subseteq (0_R)$. So ker $f = (0_R)$. (b) \implies : Assume im f = S. To show: If $s \in S$ then there exists $r \in R$ such that f(r) = s. Assume $s \in S$. Then $s \in \operatorname{im} f$. So there exists $r \in R$ such that f(r) = s. So f is surjective. \Leftarrow : Assume f is surjective. To show: (a) im $f \subseteq S$. (b) $S \subseteq \operatorname{im} f$. (a) Let $x \in \operatorname{im} f$. Then there exists $r \in R$ such that x = f(r). By the definition of $f, f(r) \in S$. So $x \in S$. So $\operatorname{im} f \subseteq S$. (b) Assume $x \in S$. Since f is surjective there exists $r \in R$ such that f(r) = x. So $x \in \operatorname{im} f$. So $S \subseteq \operatorname{im} f$. So im f = S.

Theorem R.5.6. —

(a) Let $f: R \to S$ be a ring homomorphism and let $K = \ker f$. Define

 $\hat{f} \colon R/\ker f \to S$ $r + K \mapsto f(r).$

Then \hat{f} is a well defined injective ring homomorphism. (b) Let $f: R \to S$ be a ring homomorphism and define

$$\begin{array}{rccc} f' \colon & R & \to & \inf f \\ & r & \mapsto & f(r). \end{array}$$

Then f' is a well defined surjective ring homomorphism. (c) If $f: R \to S$ is a ring homomorphism, then

 $R/\ker f \simeq \operatorname{im} f$

where the isomorphism is a ring isomorphism.

Proof. — Let 1_R and 1_S be the identities in R and S respectively.

(a) To show: (aa) \hat{f} is well defined.

(ab) f is injective.

(ac) \hat{f} is a ring homomorphism.

(aa) To show: (aaa) If $r \in R$ then $\hat{f}(r+K) \in S$. (aab) If $r_1 + K = r_2 + K \in R/K$ then $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$. (aaa) Assume $r \in R$. Then f(r+K) = f(r), and $f(r) \in S$, by the definition of f and f. (aab) Assume $r_1 + K = r_2 + K$. Then $r_1 = r_2 + k$ for some $k \in K$. To show: $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$, i.e., To show: $f(r_1) = f(r_2)$. Since $k \in \ker f$, we have f(k) = 0 and so

$$= \frac{1}{2}, \qquad \frac{1}{2}$$

$$f(r_1) = f(r_2 + k) = f(r_2) + f(k) = f(r_2) + 0 = f(r_2)$$

So $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$.

So \hat{f} is well defined.

(ab) To show: If $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$ then $r_1 + K = r_2 + K$. Assume $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$. Then $f(r_1) = f(r_2)$. So $f(r_1) - f(r_2) = 0$. So $f(r_1 - r_2) = 0$. So $r_1 - r_2 \in \ker f$. So there exists $k \in \ker f$ such that $r_1 - r_2 = k$.

So there exists $k \in \ker f$ such that $r_1 = r_2 + k$.

To show: (aba) $r_1 + K \subseteq r_2 + K$.

$$(abb) r_2 + K \subseteq r_1 + K.$$

(aba) Let $r \in r_1 + K$. Then there exists $k_1 \in K$ such that $r = r_1 + k_1$. Since $k + k_1 \in K$ then $r = r_2 + k + k_1 \in r_2 + K$ So $r_1 + K \subseteq r_2 + K$.

(abb) Let
$$r \in r_2 + K$$
.
Then there exists $k_2 \in K$ such that $r = r_2 + k_2$, for some $k_2 \in K$.

Since $-k + k_2 \in K$ then $r = r_2 + k_2 = r_1 - k + k_2 \in r_1 + K$. So $r_2 + K \subseteq r_1 + K$. So $r_1 + K = r_2 + K$. So f is injective. (ac) To show: (aca) If $r_1 + K, r_2 + K \in R/K$ then $\hat{f}((r_1 + k) + (r_2 + K)) =$ $\hat{f}(r_1 + K) + \hat{f}(r_2 + K).$ (acb) If $r_1 + K, r_2 + K \in R/K$ then $\hat{f}((r_1 + K)(r_2 + K)) = \hat{f}(r_1 + K)$ $K)f(r_{2}+K).$ (acc) $\hat{f}(1_R + K) = 1_S$. (aca) Let $r_1 + K, r_2 + K \in R/K$. Since f is a homomorphism, $\hat{f}(r_1+K) + \hat{f}(r_2+K) = f(r_1) + f(r_2) = f(r_1+r_2) = \hat{f}((r_1+r_2)+K) = \hat{f}((r_1+K) + (r_2+K)).$ (acb) Let $r_1 + K, r_2 + K \in R/K$. Since f is a homomorphism, $\hat{f}(r_1+K)\hat{f}(r_2+K) = f(r_1)f(r_2) = f(r_1r_2) = \hat{f}(r_1r_2+K) = \hat{f}((r_1+K)(r_2+K)).$ (acc) Since f is a homomorphism, $\hat{f}(1_R + K) = f(1_R) = 1_S.$ So \hat{f} is a ring homomorphism. So \hat{f} is a well defined injective ring homomorphism. (b) Let 1_R and 1_S be the identities in R and S respectively. To show: (ba) f' is well defined. (bb) f' is surjective. (bc) f' is a ring homomorphism. (ba) and (bb) are proved in Ex. 2.2.4 a) and b), Part I.FIX THIS UPFIX THIS

UP FIX (bc) To show: (bca) If $r_1, r_2 \in R$ then $f'(r_1 + r_2) = f'(r_1) + f'(r_2)$. (bcb) If $r_1, r_2 \in R$ then $f'(r_1r_2) = f'(r_1)f'(r_2)$. (bcc) $f'(1_R) = 1_S$.

(bca) Let
$$r_1, r_2 \in R$$
.

Then, since f is a homomorphism,

$$f'(r_1 + r_2) = f(r_1 + r_2) = f(r_1) + f(r_2) = f'(r_1) + f'(r_2).$$

(bcb) Let $r_1, r_2 \in R$.

Then, since f is a homomorphism,

$$f'(r_1r_2) = f(r_1r_2) = f(r_1)f(r_2) = f'(r_1)f'(r_2).$$

(bcc) Since f is a homomorphism,

$$f'(1_R) = f(1_R) = 1_S.$$

So f' is a homomorphism.

So f' is a well defined surjective ring homomorphism. (c) Let $K = \ker f$. By (a), the function

$$\hat{f} \colon \begin{array}{ccc} R/K & \to & S \\ r+K & \mapsto & f(r) \end{array}$$

is a well defined injective ring homomorphism. By (b), the function

$$\hat{f}' \colon \begin{array}{ccc} R/K & \to & \inf \hat{f} \\ r+K & \mapsto & \hat{f}(r+K) = f(r) \end{array}$$

is a well defined surjective ring homomorphism. To show: $\inf \hat{f} = \inf f$. (cb) \hat{f}' is injective. (ca) To show: (caa) im $\hat{f} \subseteq \text{im } f$. (cab) im $f \subset \operatorname{im} \hat{f}$. (caa) Let $s \in \operatorname{im} f$. Then there exists $r + K \in R/K$ such that $\hat{f}(r + K) = s$. Let $r' \in r + K$. Then there exists $k \in K$ such that r' = r + k. Since f is a homomorphism and f(k) = 0 then $f(r') = f(r+k) = f(r) + f(k) = f(r) = \hat{f}(r+k) = s.$ So $s \in \operatorname{im} f$. So im $\hat{f} \subseteq \operatorname{im} f$. (cab) Let $s \in \operatorname{im} \hat{f}$. Then there exists $r \in R$ such that f(r) = s. So $\hat{f}(r+K) = f(r) = s$. So $s \in \operatorname{im} f$. So $\operatorname{im} f \subseteq \operatorname{im} f$. So $\operatorname{im} f = \operatorname{im} \hat{f}$. (cb) To show: If $\hat{f}'(r_1 + K) = \hat{f}'(r_2 + K)$ then $r_1 + K = r_2 + K$. Assume $\hat{f}'(r_1 + K) = \hat{f}'(r_2 + K).$ Then $\hat{f}(r_1 + K) = \hat{f}(r_2 + K).$ Since \hat{f} is injective then $r_1 + K = r_2 + K$. So \hat{f}' is injective. Thus

$$\begin{array}{rccc} f' \colon & R/K & \to & \inf f \\ & r+K & \mapsto & f(r) \end{array}$$

is a well defined bijective ring homomorphism.

Proposition R.5.7. — Let R be a ring. Let 0_R and 1_R be the zero and the identity in R respectively.

(a) There is a unique ring homomorphism $\varphi \colon \mathbb{Z} \to R$ given by

$$\varphi(0) = 0_R,$$

$$\varphi(m) = \underbrace{1_R + \dots + 1_R}_{m \text{ times}}, \quad and$$

$$\varphi(-m) = -\varphi(m), \quad for \ m \in \mathbb{Z}_{>0}.$$

(b) $\ker \varphi = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}\$ where n = char(R) is the characteristic of the ring R.

- *Proof.* Let 1_R and 0_R be the identity and zero of the ring R.
 - (a) Define $\varphi \colon \mathbb{Z} \to R$ by defining, for $m \in \mathbb{Z}_{>0}$,

(R.5.1)

$$\varphi(m) = \underbrace{\mathbf{1}_R + \dots + \mathbf{1}_R}_{m \text{ times}},$$

$$\varphi(-m) = -\varphi(m),$$

$$\varphi(0) = \mathbf{0}_R.$$

- To show: (aa) φ is unique.
 - (ab) φ is well defined, i.e. a function.
 - (ac) φ is a homomorphism.

(aa) To show: If $\varphi' : \mathbb{Z} \to R$ is a homomorphism then $\varphi' = \varphi$. Assume $\varphi' : \mathbb{Z} \to R$ is a homomorphism. To show: If $m \in \mathbb{Z}$ then $\varphi'(m) = \varphi(m)$. If m = 1 then $\varphi'(1) = 1_R = \varphi(1)$. If m > 0 then

$$\varphi'(m) = \varphi'(\underbrace{1 + \dots + 1}_{m \text{ times}}) = \underbrace{\varphi'(1) + \dots + \varphi'(1)}_{m \text{ times}} = \underbrace{1_R + \dots + 1_R}_{m \text{ times}} = \varphi(m).$$
$$\varphi'(-m) = -\varphi'(m) = -\varphi(m) = \varphi(-m).$$

If m = 0 then $\varphi'(0) = 0_R = \varphi(0)$.

- (ab) Since $\mathbb{Z} = \mathbb{Z}_{>0} \sqcup \{0\} \sqcup -\mathbb{Z}_{>0}$ and the right hand side of each expression in (R.5.1) is an element of R then φ is a function.
- (ac) To show: (aca) $\varphi(1) = 1_R$. (acb) $\varphi(mn) = \varphi(m)\varphi(n)$.
 - (acc) $\varphi(m+n) = \varphi(m) + \varphi(n).$
 - (aca) This follows from the definition of φ .
 - (acb) Let m, n > 0. Then, by the distributive law,

$$\varphi(m)\varphi(n) = (\underbrace{1 + \dots + 1}_{m \text{ times}})(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{1 + \dots + 1}_{mn \text{ times}} = \varphi(mn).$$

$$\varphi(m)\varphi(-n) = \varphi(m)\big(-\varphi(n)\big) = \varphi(m)(-1_R)\varphi(n) = (-1_R)\varphi(m)\varphi(n)$$
$$= (-1_R)\varphi(mn) = -\varphi(mn) = \varphi\big(m(-n)\big).$$

$$\varphi(-m)\varphi(n) = -\varphi(m)\varphi(n) = (-1_R)\varphi(m)\varphi(n) = (-1_R)\varphi(mn) = -\varphi(mn) = \varphi((-m)n).$$

$$\varphi(-m)\varphi(-n) = (-1_R)\varphi(m)(-1)_R\varphi(n) = \varphi(m)\varphi(n) = \varphi(mn) = \varphi((-m)(-n)).$$

(acc) Let m, n > 0.

Then

$$\varphi(m) + \varphi(n) = \underbrace{1 + \dots + 1}_{m \text{ times}} + \underbrace{1 + \dots + 1}_{n \text{ times}} = \underbrace{1 + \dots + 1}_{m+n \text{ times}} = \varphi(m+n).$$

$$\varphi(-m) + \varphi(-n) = -\varphi(m) - \varphi(n) = -(\varphi(m) + \varphi(n)) = -\varphi(m+n)$$
$$= \varphi(-(m+n)) = \varphi((-m) + (-n)).$$

If
$$m \ge n$$
, $\varphi(m) + \varphi(-n) = \varphi(m) - \varphi(n) = \underbrace{(1 + \dots + 1)}_{m \text{ times}} - \underbrace{(1 + \dots + 1)}_{n \text{ times}}$
$$= \underbrace{1 + \dots + 1}_{m-n \text{ times}} = \varphi(m-n).$$

If
$$m < n$$
, $\varphi(m) + \varphi(-n) = \varphi(m) - \varphi(n) = -(\varphi(n) - \varphi(m))$
= $-\varphi(n-m) = \varphi(m-n)$.

So φ is a homomorphism.

(b) Let $n = \operatorname{char}(R)$. To show: (ba) $n\mathbb{Z} \subseteq \ker \varphi$. (bb) $\ker \varphi \subseteq n\mathbb{Z}$. First we show $n \in \ker \varphi$. By the definition of $\operatorname{char}(R)$,

$$\varphi(n) = \underbrace{\mathbf{1}_R + \dots + \mathbf{1}_R}_{n \text{ times}} = \mathbf{0}_R.$$

So $n \in \ker \varphi$.

(ba) Let $m \in n\mathbb{Z}$. Then there exists $k \in \mathbb{Z}$ such that m = nk. Since φ is a homomorphism,

$$\varphi(m) = \varphi(nk) = \varphi(n)\varphi(k) = 0 \cdot \varphi(k) = 0.$$

So $\varphi(m) \in \ker \varphi$. So $n\mathbb{Z} \subseteq \ker \varphi$.

(bb) Let $m \in \ker \varphi$.

Write m = nr + s with $0 \leq s < n$ and $r \in \mathbb{Z}$. Then, since φ is a homomorphism,

$$0_R = \varphi(m) = \varphi(nr+s) = \varphi(n)\varphi(r) + \varphi(s) = 0_R + \varphi(s) = \underbrace{1_R + \dots + 1_R}_{s \text{ times}}.$$

By definition of char(R), n is the smallest positive integer such that $\underbrace{1_R + \cdots 1_R}_{n \text{ times}} =$

 $\begin{array}{l} 0_R.\\ \text{So }s=0.\\ \text{So }m=nr.\\ \text{So }m\in n\mathbb{Z}.\\ \text{So }\ker\varphi\subseteq n\mathbb{Z}. \end{array}$

So ker $\varphi = n\mathbb{Z}$.

Proposition R.5.8. — Every proper ideal I of a ring R is contained in a maximal ideal of R.

Proof. — The idea is to use Zorn's lemma on the set of proper ideals of R containing I, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn's Lemma. If S is a poset such that every chain in S has an upper bound then S has a maximal element.

Let S be the set of proper ideals of R containing I, ordered by inclustion. To show: Given a chain of ideals in S

$$\cdots \subseteq I_{k-1} \subseteq I_k \subseteq I_{k+1} \subseteq \cdots$$

then there exists is a proper ideal J of R containing I that contains all the I_k .

Let

$$J = \bigcup_k I_k.$$

To show: (a) J is an ideal.

(b) J is a proper ideal.

(a) To show: (aa) If $i, j \in J$ then $i + j \in J$. (ab) If $i \in J$ and $r \in R$ then $ir \in J$ and $ri \in J$.

(aa) Assume $i, j \in J$. Then there exists k and k' such that $i \in I_k$ and $j \in I_{k'}$. Since either $I_k \subseteq I_{k'}$ or $I_{k'} \subseteq I_k$ then either $i, j \in I_k$ or $i, j \in I_{k'}$. Since I_k and $I_{k'}$ are ideals then either $i + j \in I_k$ or $i + j \in I_{k'}$. So

$$i+j \in \bigcup_k I_k = J_k$$

(ab) Assume $i \in J$ and $r \in R$.

Then there exists k such that $i \in I_k$. Since I_k is an ideal then $ri \in I_k$ and $ir \in I_k$. So

$$ri \in \bigcup_k I_k = J$$
 and $ir \in \bigcup_k I_k = J$.

So J is an ideal.

(b) To show: $1 \notin J$.

Since the I_k are proper ideals then $1 \notin I_k$. So

$$1 \notin \bigcup_k I_k = J_k$$

So J is a proper ideal of R.

So every chain of proper ideals in R that contain I has an upper bound. Thus, by Zorn's lemma, the set S of proper ideals containing I has a maximal element. So I is contained in a maximal ideal.