F.2. Proofs: Vector Spaces

Proposition F.2.1. - Let V be an \mathbb{F}-vector space and let W be a subgroup of V. Then the cosets of W in V partition V.

Proof. -
To show: (a) If $v \in V$ then there exists $v^{\prime} \in V$ such that $v \in v^{\prime}+W$.
(b) If $\left(v_{1}+W\right) \cap\left(v_{2}+W\right) \neq \emptyset$ then $v_{1}+W=v_{2}+W$.
(a) Let $v \in V$.

Since $0 \in W$ then $v=v+0 \in v+W$.
So $v \in v+W$.
(b) Assume $\left(v_{1}+W\right) \cap\left(v_{2}+W\right) \neq \emptyset$.

To show: (ba) $v_{1}+W \subseteq v_{2}+W$.

$$
\text { (bb) } v_{2}+W \subseteq v_{1}+W
$$

Let $a \in\left(v_{1}+W\right) \cap\left(v_{2}+W\right)$.
Suppose $a=v_{1}+w_{1}$ and $a=v_{2}+w_{2}$ where $w_{1}, w_{2} \in W$.
Then

$$
\begin{aligned}
& v_{1}=v_{1}+w_{1}-w_{1}=a-w_{1}=v_{2}+w_{2}-w_{1} \quad \text { and } \\
& v_{2}=v_{2}+w_{2}-w_{2}=a-w_{2}=v_{1}+w_{1}-w_{2}
\end{aligned}
$$

(ba) Let $v \in v_{1}+W$.
Then there exists $w \in W$ such that $v=v_{1}+w$.
Since $w_{2}-w_{1}+w \in W$.

$$
v=v_{1}+w=v_{2}+w_{2}-w_{1}+w \in v_{2}+W
$$

So $v_{1}+W \subseteq v_{2}+W$.
(bb) Let $v \in v_{2}+W$.
Then there exists $w \in W$ such that $v=v_{2}+w$.
Since $w_{1}-w_{2}+w \in W$ then

$$
v=v_{2}+w=v_{1}+w_{1}-w_{2}+w \in v_{1}+W
$$

So $v_{2}+W \subseteq v_{1}+W$.
So $v_{1}+W=v_{2}+W$.
So the cosets of W in V partition V.
Theorem F.2.2. - Let W be a subgroup of an \mathbb{F}-vector space V. Then W is a subspace of V if and only if V / W with operations given by

$$
\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W \quad \text { and } \quad c(v+W)=c v+W
$$

is an \mathbb{F}-vector space.
Proof. -
\Longrightarrow : Assume W is a subspace of V.
To show: (a) $\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W$ is a well defined operation on V / W.
(b) The operation given by $c(v+W)=c v+W$ is well defined.
(c) If $v_{1}+W, v_{2}+W, v_{3}+W \in V / W$ then $\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)+\left(v_{3}+W\right)=\left(v_{1}+W\right)+\left(\left(v_{2}+W\right)+\left(v_{3}+W\right)\right)$.
(d) If $v_{1}+W, v_{2}+W \in V / W$ then $\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{2}+W\right)+\left(v_{1}+W\right)$.
(e) $0+W=W$ is the zero in V / W.
(f) $-v+W$ is the additive inverse of $v+W$.
(g) If $c_{1}, c_{2} \in F$ and $v+W \in V / W$, then $c_{1}\left(c_{2}(v+W)\right)=\left(c_{1} c_{2}\right)(v+W)$.
(h) If $v+W \in V / W$ then $1(v+W)=v+W$.
(i) If $c \in \mathbb{F}$ and $v_{1}+W, v_{2}+W \in V / W$ then

$$
c\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)=c\left(v_{1}+W\right)+c\left(v_{2}+W\right)
$$

(j) If $c_{1}, c_{2} \in \mathbb{F}$ and $v+W \in V / W$ then $\left(c_{1}+c_{2}\right)(v+W)=c_{1}(v+W)+c_{2}(v+W)$.
(a) To show:

$$
\begin{array}{ccc}
V / W \times V / W & \rightarrow & V / W \\
\left(v_{1}+W, v_{2}+W\right) & \mapsto & \left(v_{1}+v_{2}\right)+W
\end{array} \quad \text { is a function. }
$$

Let $\left(v_{1}+W, v_{2}+W\right),\left(v_{3}+W, v_{4}+W\right) \in V / W \times V / W$ such that $\left(v_{1}+W, v_{2}+W\right)=$ $\left(v_{3}+W, v_{4}+W\right)$.
Then $v_{1}+W=v_{3}+W$ and $v_{2}+W=v_{4}+W$.
To show: $\left(v_{1}+v_{2}\right)+W=\left(v_{3}+v_{4}\right)+W$.
To show: (aa) $\left(v_{1}+v_{2}\right)+W \subseteq\left(v_{3}+v_{4}\right)+W$.
(ab) $\left(v_{3}+v_{4}\right)+W \subseteq\left(v_{1}+v_{2}\right)+W$.
(aa) Since $v_{1}+W=v_{3}+W$ then $v_{1}=v_{1}+0 \in v_{3}+W$.
So there exists $w_{1} \in W$ such that $v_{1}=v_{3}+w_{1}$.
Similarly there exists $w_{2} \in W$ such that $v_{2}=v_{4}+w_{2}$.
Let $t \in\left(v_{1}+v_{2}\right)+W$.
Then there exists $w \in W$ such that $t=v_{1}+v_{2}+w$.
Since addition is commutative then

$$
\begin{aligned}
t & =v_{1}+v_{2}+w \\
& =v_{3}+w_{1}+v_{4}+w_{2}+w \\
& =v_{3}+v_{4}+w_{1}+w_{2}+w,
\end{aligned}
$$

So $t=\left(v_{3}+v_{4}\right)+\left(w_{1}+w_{2}+w\right) \in v_{3}+v_{4}+W$.
So $\left(v_{1}+v_{2}\right)+W \subseteq\left(v_{3}+v_{4}\right)+W$.
(ab) Since $v_{1}+W=v_{3}+W$ then there exists $w_{1} \in W$ such that $v_{1}+w_{1}=v_{3}$.
Since $v_{2}+W=v_{4}+W$ there exists $w_{2} \in W$ such that $v_{2}+w_{2}=v_{4}$.
Let $t \in\left(v_{3}+v_{4}\right)+W$.
Then there exists $w \in W$ such that $t=v_{3}+v_{4}+w$.
Since addition is commutative then

$$
\begin{aligned}
t & =v_{3}+v_{4}+w \\
& =v_{1}+w_{1}+v_{2}+w_{2}+w \\
& =v_{1}+v_{2}+w_{1}+w_{2}+w,
\end{aligned}
$$

$$
\text { So } t=\left(v_{1}+v_{2}\right)+\left(w_{1}+w_{2}+w\right) \in\left(v_{1}+v_{2}\right)+W \text {. }
$$

$$
\text { So }\left(v_{3}+v_{4}\right)+W \subseteq\left(v_{1}+v_{2}\right)+W \text {. }
$$

So $\left(v_{1}+v_{2}\right)+W=\left(v_{3}+v_{4}\right)+W$.
So the operation given by $\left(v_{1}+W\right)+\left(v_{3}+W\right)=\left(v_{1}+v_{3}\right)+W$ is a well defined operation on V / W.
(b) To show:

$$
\begin{array}{ll}
\mathbb{F} \times V / W & \rightarrow V / W \\
(c, v+W) & \mapsto c v+W
\end{array} \quad \text { is a function. }
$$

Let $\left(c_{1}, v_{1}+W\right),\left(c_{2}, v_{2}+W\right) \in(\mathbb{F} \times V / W)$ such that $\left(c_{1}, v_{1}+W\right)=\left(c_{2}, v_{2}+W\right)$.

Then $c_{1}=c_{2}$ and $v_{1}+W=v_{2}+W$.
To show: $c_{1} v_{1}+W=c_{2} v_{2}+W$.
To show: (ba) $c_{1} v_{1}+W \subseteq c_{2} v_{2}+W$.
(bb) $c_{2} v_{2}+W \subseteq c_{1} v_{1}+W$.
(ba) Since $v_{1}+W=v_{2}+W$ then there exists $w_{1} \in W$ such that $v_{1}=v_{2}+w_{1}$.
Let $t \in c_{1} v_{1}+W$.
Then there exists $w \in W$ such that $t=c_{1} v_{1}+w$.
Since $c_{1}=c_{2}$ then

$$
\begin{aligned}
t & =c_{1} v_{1}+w \\
& =c_{2}\left(v_{2}+w_{1}\right)+w \\
& =c_{2} v_{2}+c_{2} w_{1}+w,
\end{aligned}
$$

Since W is a subspace then $c_{2} w_{1} \in W$ and $c_{2} w_{1}+w \in W$.
So $t=c_{2} v_{2}+c_{2} w_{1}+w \in c_{2} v_{2}+W$.
So $c_{1} v_{1}+W \subseteq c_{2} v_{2}+W$.
(bb) Since $v_{1}+W=v_{2}+W$ then there exists $w_{2} \in W$ such that $v_{2}=v_{1}+w_{2}$.
Let $t \in c_{2} v_{2}+W$.
Then there exists $w \in W$ such that $t=c_{2} v_{2}+w$.
Since $c_{2}=c_{1}$ then

$$
\begin{aligned}
t & =c_{2} v_{2}+w \\
& =c_{1}\left(v_{1}+w_{2}\right)+w \\
& =c_{1} v_{1}+c_{1} w_{2}+w
\end{aligned}
$$

Since W is a subspace then $c_{1} w_{2} \in W$ and $c_{1} w_{2}+w \in W$.
So $t=c_{1} v_{1}+c_{1} w_{2}+w \in c_{1} v_{1}+W$.
So $c_{2} v_{2}+W \subseteq c_{1} v_{1}+W$.
So $c_{1} v_{1}+W=c_{2} v_{2}+W$.
So the operation is well defined.
(c) By the associativity of addition in V and the definition of the operation in V / W, if $v_{1}+W, v_{2}+W, v_{3}+W \in V / W$ then

$$
\begin{aligned}
\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)+\left(v_{3}+W\right) & =\left(\left(v_{1}+v_{2}\right)+W\right)+\left(v_{3}+W\right) \\
& =\left(\left(v_{1}+v_{2}\right)+v_{3}\right)+W \\
& =\left(v_{1}+\left(v_{2}+v_{3}\right)\right)+W \\
& =\left(v_{1}+W\right)+\left(\left(v_{2}+v_{3}\right)+W\right) \\
& =\left(v_{1}+W\right)+\left(\left(v_{2}+W\right)+\left(v_{3}+W\right)\right)
\end{aligned}
$$

(d) By the commutativity of addition in V and the definition of the operation in V / W, if $v_{1}+W, v_{2}+W \in V / W$ then

$$
\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W=\left(v_{2}+v_{1}\right)+W=\left(v_{2}+W\right)+\left(v_{1}+W\right)
$$

(e) If $v+W \in V / W$ then

$$
\begin{aligned}
W+(v+W) & =(0+v)+W \\
& =v+W \\
& =(v+0)+W \\
& =(v+W)+W .
\end{aligned}
$$

So the coset $W=0+W$ is the zero in V / W.
(f) Let $v+W \in V / W$. Then

$$
\begin{aligned}
(v+W)+(-v+W) & =v+(-v)+W \\
& =0+W \\
& =W \\
& =(-v+v)+W \\
& =(-v+W)+v+W
\end{aligned}
$$

Thus $(-v)+W$ is the additive inverse of $v+W$.
(g) Assume $c_{1}, c_{2} \in \mathbb{F}$ and $v+W \in V / W$.

Then, by definition of the operation,

$$
\begin{aligned}
c_{1}\left(c_{2}(v+W)\right) & =c_{1}\left(c_{2} v+W\right) \\
& =c_{1}\left(c_{2} v\right)+W \\
& =\left(c_{1} c_{2}\right) v+W \\
& =\left(c_{1} c_{2}\right)(v+W) .
\end{aligned}
$$

(h) Assume $v+W \in V / W$.

Then, by definition of the operation,

$$
\begin{aligned}
1(v+W) & =(1 v)+W \\
& =v+W
\end{aligned}
$$

(i) Assume $c \in \mathbb{F}$ and $v_{1}+W, v_{2}+W \in V / W$.

Then

$$
\begin{aligned}
c\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right) & =c\left(\left(v_{1}+v_{2}\right)+W\right) \\
& =c\left(v_{1}+v_{2}\right)+W \\
& =\left(c v_{1}+c v_{2}\right)+W \\
& =\left(c v_{1}+W\right)+\left(c v_{2}+W\right) \\
& =c\left(v_{1}+W\right)+c\left(v_{2}+W\right) .
\end{aligned}
$$

(j) Assume $c_{1}, c_{2} \in F$ and $v+W \in V / W$.

Then

$$
\begin{aligned}
\left(c_{1}+c_{2}\right)(v+W) & =\left(\left(c_{1}+c_{2}\right) v\right)+W \\
& =\left(c_{1} v+c_{2} v\right)+W \\
& =\left(c_{1} v+W\right)+\left(c_{2} v+W\right) \\
& =c_{1}(v+W)+c_{2}(v+W) .
\end{aligned}
$$

So V / W is a vector space over \mathbb{F}.
\Longleftarrow : Assume W is a subgroup of V and V / W is a vector space over \mathbb{F} with action given by $c(v+W)=c v+W$.
To show: W is a subspace of V.
To show: If $c \in \mathbb{F}$ and $w \in W$ then $c w \in W$.
First we show: If $w \in W$ then $w+W=W$.
To show: (a) $w+W \subseteq W$.
(b) $W \subseteq w+W$.
(a) Let $k \in w+W$.

Then there exists $w_{-} 1 \in W$ such that $k=w+w_{1}$.
Since W is a subgroup then $w+w_{1} \in W$.
So $w+W \subseteq W$.
(b) Let $k \in W$.

Since $k-w \in W$ then $k=w+(k-w) \in w+W$.
So $W \subseteq w+W$.
Now assume $c \in \mathbb{F}$ and $w \in W$.
Then, by definition of the operation on V / W,

$$
\begin{aligned}
c w+W & =c(w+W) \\
& =c(0+W) \\
& =c \cdot 0+W \\
& =0+W \\
& =W .
\end{aligned}
$$

So $c w=c w+0 \in W$.
So W is a subspace of V.
Proposition F.2.3. - Let $T: V \rightarrow W$ be a linear transformation. Let 0_{V} and 0_{W} be the zeros for V and W respectively. Then
(a) $T\left(0_{V}\right)=0_{W}$.
(b) For any $v \in V, T(-v)=-T(v)$.

Proof. -
(a) Add $-T\left(0_{V}\right)$ to both sides of the following equation,

$$
T\left(0_{V}\right)=T\left(0_{V}+0_{V}\right)=T\left(0_{V}\right)+T\left(0_{V}\right) .
$$

(b) Since $T(v)+T(-v)=T(v+(-v))=T\left(0_{V}\right)=0_{W}$ and

$$
T(-v)+T(v)=T((-v)+v)+T\left(0_{V}\right)=0_{W}
$$

then $-T(v)=T(-v)$.

Proposition F.2.4. - Let $T: V \rightarrow W$ be a linear transformation. Then
(a) $\operatorname{ker} T$ is a subspace of V.
(b) $\operatorname{im} T$ is a subspace of W.

Proof. - Let 0_{V} and 0_{W} be the zeros in V and W, respectively.
(a) By condition (a) in the definition of linear transformation, T is a group homomorphism.
To show: (aa) If $k_{1}, k_{2} \in \operatorname{ker} T$ then $k_{1}+k_{2} \in \operatorname{ker} T$.
(ab) $0_{V} \in \operatorname{ker} T$.
(ac) If $k \in \operatorname{ker} T$ then $-k \in \operatorname{ker} T$.
(ad) If $c \in \mathbb{F}$ and $k \in \operatorname{ker} T$ then $c k \in \operatorname{ker} T$.
(aa) Assume $k_{1}, k_{2} \in \operatorname{ker} T$.
Then $T\left(k_{1}\right)=0_{W}$ and $T\left(k_{2}\right)=0_{W}$.
By condition (a) in the definition of a linear transformation,

$$
T\left(k_{1}+k_{2}\right)=T\left(k_{1}\right)+T\left(k_{2}\right)=0+0=0 .
$$

So $k_{1}+k_{2} \in \operatorname{ker} T$.
(ab) By Proposition F.2.1(a), $T\left(0_{V}\right)=0_{W}$.
So $0_{V} \in \operatorname{ker} T$.
(ac) Assume $k \in \operatorname{ker} T$.
By Proposition F.2.1(b), $T(-k)=-T(k)$.
So $T(-k)=-T(k)=-0_{W}=0_{W}$, and $-0_{W}=0_{W}$ since $0_{W}+0_{W}=0_{W}$.
So $-k \in \operatorname{ker} T$.
(ad) Assume $c \in \mathbb{F}$ and $k \in \operatorname{ker} T$.
Then, by the definition of linear transformation,

$$
T(c k)=c T(k)=c 0_{W}=0_{W}, \quad \text { and } \quad c 0_{W}=0_{W}
$$

by adding $-c 0_{W}$ to each side of $c 0_{W}+c 0_{W}=c\left(0_{W}+0_{W}\right)=c 0_{W}$.
So $T(c k)=0_{W}$ and $c k \in \operatorname{ker} T$.
So $\operatorname{ker} T$ is a subspace of V.
(b) By condition (a) in the definition of linear transformation, T is a group homomorphism.
To show: (ba) If $w_{1}, w_{2} \in \operatorname{im} T$ then $w_{1}+w_{2} \in \operatorname{im} T$.
(bb) $0_{W} \in \operatorname{im} T$.
(bc) If $w \in \operatorname{im} T$ then $-w \in \operatorname{im} T$.
(bd) If $c \in \mathbb{F}$ and $w \in \operatorname{im} T$ then $c k \in \operatorname{im} T$.
(ba) Assume $w_{1}, w_{2} \in \operatorname{im} T$.
Then there exist $v_{1}, v_{2} \in V$ such that $T\left(v_{1}\right)=w_{1}$ and $T\left(v_{2}\right)=w_{2}$.
By condition (a) in the definition of linear transformation,

$$
T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=w_{1}+w_{2} .
$$

So $w_{1}+w_{2} \in \operatorname{im} T$.
(bb) By Proposition F.2.1(a), $T\left(0_{V}\right)=0_{W}$.
So $0_{W} \in \operatorname{im} T$.
(bc) Assume $w \in \operatorname{im} T$.
The there exists $v \in V$ such that $T(v)=w$.
By Proposition F.2.1(b), $T(-v)=-T(v)=-w$.
So $-w \in \operatorname{im} T$.
(bd) To show: If $c \in \mathbb{F}$ and $a \in \operatorname{im} T$ then $c a \in \operatorname{im} T$.
Assume $c \in \mathbb{F}$ and $c \in \operatorname{im} T$.
Then there exists $v \in V$ such that $a=T(v)$.
By the definition of linear transformation,

$$
c a=c T(v)=T(c v) .
$$

So $c a \in \operatorname{im} T$.
So $\operatorname{im} T$ is a subspace of W.

Proposition F.2.5. - Let $T: V \rightarrow W$ be a linear transformation. Let 0_{V} be the zero in V. Then
(a) $\operatorname{ker} T=\left(0_{V}\right)$ if and only if T is injective.
(b) $\operatorname{im} T=W$ if and only if T is surjective.

Proof. - Let 0_{V} and 0_{W} be the zeros in V and W respectively.
(a) \Longrightarrow : Assume ker $T=\left(0_{V}\right)$.

To show: If $T\left(v_{1}\right)=T\left(v_{2}\right)$ then $v_{1}=v_{2}$.
Assume $T\left(v_{1}\right)=T\left(v_{2}\right)$.
Since T is a linear transformation then

$$
0_{W}=T\left(v_{1}\right)-T\left(v_{2}\right)=T\left(v_{1}-v_{2}\right) .
$$

So $v_{1}-v_{2} \in \operatorname{ker} T$.
Since ker $T=\left(0_{V}\right)$ then $v_{1}-v_{2}=0_{V}$.
So $v_{1}=v_{2}$.
So T is injective.
\Longleftarrow : Assume T is injective
To show: (aa) $\left(0_{V}\right) \subseteq \operatorname{ker} T$.
(ab) $\operatorname{ker} T \subseteq\left(0_{V}\right)$.
(aa) Since $T\left(0_{V}\right)=0_{W}$ then $0_{V} \in \operatorname{ker} T$.
So $\left(0_{V}\right) \subseteq \operatorname{ker} T$.
(ab) Let $k \in \operatorname{ker} T$.
Then $T(k)=0_{W}$.
So $T(k)=T\left(0_{V}\right)$.
Thus, since T is injective then $k=0_{V}$.
So $\operatorname{ker} T \subseteq\left(0_{V}\right)$.
So $\operatorname{ker} T=\left(0_{V}\right)$.
(b) \Longrightarrow : Assume im $T=W$.

To show: If $w \in W$ then there exists $v \in V$ such that $T(v)=w$.
Assume $w \in W$.
Then $w \in \operatorname{im} T$.
So there exists $v \in V$ such that $T(v)=w$.
So T is surjective.
\Longleftarrow : Assume T is surjective.
To show: (ba) im $T \subseteq W$.
(bb) $W \subseteq \operatorname{im} T$.
(ba) Let $x \in \operatorname{im} T$.
Then there exists $v \in V$ such that $x=T(v)$.
By the definition of $T, T(v) \in W$.
So $x \in W$.

So $\operatorname{im} T \subseteq W$.
(bb) Assume $x \in W$.
Since T is surjective there exists $v \in V$ such that $T(v)=x$.
So $x \in \operatorname{im} T$.
So $W \subseteq \operatorname{im} T$.
So $\operatorname{im} T=W$.

Theorem F.2.6. -
(a) Let $T: V \rightarrow W$ be a linear transformation and let $K=\operatorname{ker} T$. Define

$$
\begin{array}{rlcc}
\hat{T}: & V / \operatorname{ker} T & \rightarrow & W \\
v+K & \mapsto & T(v) .
\end{array}
$$

Then \hat{T} is a well defined injective linear transformation.
(b) Let $T: V \rightarrow W$ be a linear transformation and define

$$
\begin{array}{llll}
T^{\prime}: & V & \rightarrow & \operatorname{im} T \\
& v & \mapsto & T(v) .
\end{array}
$$

Then T^{\prime} is a well defined surjective linear transformation.
(c) If $T: V \rightarrow W$ is a linear transformation, then

$$
V / \operatorname{ker} T \simeq \operatorname{im} T
$$

where the isomorphism is a vector space isomorphism.
Proof. -
(a) To show: (aa) \hat{T} is a function.
(ab) \hat{T} is injective.
(ac) \hat{T} is a linear transformation.
(aa) To show: (aaa) If $v \in V$ then $\hat{T}(v+K) \in W$.

$$
\text { (aab) If } v_{1}+K=v_{2}+K \in V / K \text { then } \hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right) \text {. }
$$

(aaa) Assume $v \in V$.
Then $\hat{T}(v+K)=T(v)$ and $T(v) \in W$, by the definition of \hat{T} and T.
(aab) Assume $v_{1}+K=v_{2}+K$.
Then there exists $k \in K$ such that $v_{1}=v_{2}+k$.
To show: $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$, i.e.
To show: $T\left(v_{1}\right)=T\left(v_{2}\right)$.
Since $k \in \operatorname{ker} T$ then $T(k)=0$ and so

$$
T\left(v_{1}\right)=T\left(v_{2}+k\right)=T\left(v_{2}\right)+T(k)=T\left(v_{2}\right) .
$$

So $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$.
So \hat{T} is well defined.
(ab) To show: If $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$ then $v_{1}+K=v_{2}+K$.
Assume $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$. Then $T\left(v_{1}\right)=T\left(v_{2}\right)$.
So $T\left(v_{1}\right)-T\left(v_{2}\right)=0$.
So $T\left(v_{1}-v_{2}\right)=0$.
So $v_{1}-v_{2} \in \operatorname{ker} T$.

So there exists $k \in \operatorname{ker} T$ such that $v_{1}-v_{2}=k$.
So there exists $k \in \operatorname{ker} T$ such that $v_{1}=v_{2}+k$.
To show: (aba) $v_{1}+K \subseteq v_{2}+K$.
(abb) $v_{2}+K \subseteq v_{1}+K$.
(aba) Let $v \in v_{1}+K$.
Then there exists $k_{1} \in K$ such that $v=v_{1}+k_{1}$.
Since $k+k_{1} \in K$ then $v=v_{2}+k+k_{1} \in v_{2}+K$.
So $v_{1}+K \subseteq v_{2}+K$.
(abb) Let $v \in v_{2}+K$.
Then there exists $k_{2} \in K$ such that $v=v_{2}+k_{2}$.
Since $-k+k_{2} \in K$ then $v=v_{1}-k+k_{2} \in v_{1}+K$.
So $v_{2}+K \subseteq v_{1}+K$.
So $v_{1}+K=v_{2}+K$.
So \hat{T} is injective.
(ac) To show: (aca) If $v_{1}+K, v_{2}+K \in V / K$ then $\hat{T}\left(v_{1}+K\right)+\hat{T}\left(v_{2}+K\right)=$ $\hat{T}\left(\left(v_{1}+K\right)+\left(v_{2}+K\right)\right)$.

$$
\text { (acb) If } c \in \mathbb{F} \text { and } v+K \in V / K \text { then } \hat{T}(c(v+K))=c \hat{T}(v+K)
$$

(aca) Let $v_{1}+K, v_{2}+K \in V / K$.
Since T is a homomorphism,

$$
\begin{aligned}
\hat{T}\left(v_{1}+K\right)+\hat{T}\left(v_{2}+K\right) & =T\left(v_{1}\right)+T\left(v_{2}\right) \\
& =T\left(v_{1}+v_{2}\right) \\
& =\hat{T}\left(\left(v_{1}+v_{2}\right)+K\right) \\
& =\hat{T}\left(\left(v_{1}+K\right)+\left(v_{2}+K\right)\right) .
\end{aligned}
$$

(acb) Let $c \in \mathbb{F}$ and $v+K \in V / K$.
Since T is a homomorphism,

$$
\begin{aligned}
\hat{T}(c(v+K)) & =\hat{T}(c v+K) \\
& =T(c v) \\
& =c T(v) \\
& =c \hat{T}(v+K) .
\end{aligned}
$$

So \hat{T} is a linear transformation.
So \hat{T} is a well defined injective linear transformation.
(b) To show: (ba) T^{\prime} is a function.
(bb) T^{\prime} is surjective.
(bc) T^{\prime} is a linear transformation.
(ba) By the definition of $\operatorname{im} T$, if $v \in V$ then $T(v) \in \operatorname{im} T$.
Thus, since T is a function then T^{\prime} is a function.
(bb) Since $\operatorname{im} T=\{T(v) \mid v \in V\}$ then if $w \in \operatorname{im} T$ then there exists $v \in V$ such that $T(v)=w$.
Since $T^{\prime}(v)=T(v)=w$ then T^{\prime} is surjective.
(bc) To show: (bca) If $v_{1}, v_{2} \in V$ then $T^{\prime}\left(v_{1}+v_{2}\right)=T^{\prime}\left(v_{1}\right)+T^{\prime}\left(v_{2}\right)$.
(bcb) If $c \in F$ and $v \in V$ then $T^{\prime}(c v)=c T^{\prime}(v)$.
(bca) Let $v_{1}, v_{2} \in V$.

Then, since T is a linear transformation,

$$
T^{\prime}\left(v_{1}+v_{2}\right)=T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=T^{\prime}\left(v_{1}\right)+T^{\prime}\left(v_{2}\right) .
$$

(bcb) Let $v_{1}, v_{2} \in V$.
Then, since T is a linear transformation,

$$
T^{\prime}(c v)=T(c v)=c T(v)=c T^{\prime}(v) .
$$

So T^{\prime} is a linear transformation.
So T^{\prime} is a well defined surjective linear transformation.
(c) Let $K=\operatorname{ker} T$.

By (a), the function

$$
\begin{array}{cccc}
\hat{T}: & V / K & \rightarrow & W \\
& v+K & \mapsto & T(v)
\end{array}
$$

is a well defined injective linear transformation.
By (b), the function

$$
\begin{array}{rll}
\hat{T}^{\prime}: & V / K & \rightarrow \operatorname{im} \hat{T} \\
& v+K & \mapsto \hat{T}(v+K)=T(v)
\end{array}
$$

is a well defined surjective linear transformation.
To show: (ca) im $\hat{T}=\operatorname{im} T$.
(cb) \hat{T}^{\prime} is injective.
(ca) To show: (caa) im $\hat{T} \subseteq \operatorname{im} T$.

$$
(\mathrm{cab}) \operatorname{im} T \subseteq \operatorname{im} \hat{T}
$$

(caa) Let $w \in \operatorname{im} \hat{T}$.
Then there is some $v+K \in V / K$ such that $\hat{T}(v+K)=w$.
Let $v^{\prime} \in v+K$.
Then there exists $k \in K$ such that $v^{\prime}=v+k$.
Then, since T is a linear transformation and $T(k)=0$,

$$
\begin{aligned}
T\left(v^{\prime}\right) & =T(v+k) \\
& =T(v)+T(k) \\
& =T(v) \\
& =\hat{T}(v+K) \\
& =w .
\end{aligned}
$$

So $w \in \operatorname{im} T$.
So $\operatorname{im} \hat{T} \subseteq \operatorname{im} T$.
(cab) Let $w \in \operatorname{im} T$.
Then there is some $v \in V$ such that $T(v)=w$.
So $\hat{T}(v+K)=T(v)=w$.
So $w \in \operatorname{im} \hat{T}$.
So $\operatorname{im} T \subseteq \operatorname{im} \hat{T}$.
So $\operatorname{im} T=\operatorname{im} \hat{T}$.
(cb) To show: If $\hat{T}^{\prime}\left(v_{1}+K\right)=\hat{T}^{\prime}\left(v_{2}+K\right)$ then $v_{1}+K=v_{2}+K$.
Assume $\hat{T}^{\prime}\left(v_{1}+K\right)=\hat{T}^{\prime}\left(v_{2}+K\right)$.
Then $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$.
Since \hat{T} is injective then $v_{1}+K=v_{2}+K$.
So \hat{T}^{\prime} is injective.

Thus,

$$
\begin{array}{rlll}
\hat{T}^{\prime}: & V / K & \rightarrow & \operatorname{im} \hat{T} \\
v+K & \mapsto & T(v)
\end{array}
$$

is a well defined bijective linear transformation.

Proposition F.2.7. - Let V be an \mathbb{F}-vector space and let B be a subset of V. The following are equivalent:
(a) B is a basis of V.
(b) B is a minimal element of $\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(c) B is a maximal element of $\{L \subseteq V \mid L$ is linearly independent $\}$. (In (b) and (c) the ordering is by inclusion.)

Proof. -

(b) \Rightarrow (a): Let $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F}}(S)=V$.

To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is a basis.
To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is linearly independent.
Proof by contrapositive.
To show: If S is not linearly independent then S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S)=V$.
Assume S is not linearly independent.
To show: There exists $s \in S$ such that $\operatorname{span}_{\mathbb{F}}(S-\{s\})=V$.
Since S is linearly independent then there exist $k \in \mathbb{Z}_{>0}$ and $s_{1}, \ldots, s_{k} \in S$ and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $i \in\{1, \ldots, k\}$ such that $c_{1} s_{1}+\cdots+c_{k} s_{k}=0$ and $c_{i} \neq 0$.
Let $s=s_{i}$.
Using that \mathbb{F} is a field and $c_{i} \neq 0$ then

$$
\begin{aligned}
s=s_{i} & =c_{i}^{-1}\left(c_{1} s_{1}+\ldots+c_{i-1} s_{i-1}+c_{i+1} s_{i+1}+\cdots+s_{k} c_{k}\right) \\
& =c_{i}^{-1} c_{1} s_{1}+\cdots+c_{i}^{-1} c_{i-1} s_{i-1}+c_{i}^{-1} c_{i+1} s_{i+1}+\cdots+c_{i}^{-1} c_{k} s_{k} .
\end{aligned}
$$

So $V=\operatorname{span}_{\mathbb{F}}(S)=\operatorname{span}_{\mathbb{F}}(S-\{s\})$.
So S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S)=V$.
(a) $\Rightarrow(\mathrm{b})$: Proof by contrapositive.

To show: If B is not minimal element of $\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$ then B is not a basis of V.
Assume B is not minimal element of $\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
So there exists $b \in B$ such that $\operatorname{span}_{\mathbb{F}}(B-\{b\}) \neq V$.
To show: (aa) $B \in\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(ab) If $b \in B$ then $B-\{b\} \notin\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(aa) Since $\operatorname{span}_{\mathbb{F}}(B)=V$ then $B \in\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(ab) Assume $b \in B$.
To show: $B-\{b\} \notin\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
To show: $\operatorname{span}_{\mathbb{F}}(B-\{b\}) \neq V$.
Since $\operatorname{span}_{\mathbb{F}}(B)=V$ then there exist $k \in \mathbb{Z}_{>0}, b_{1}, \ldots, b_{k} \in B$ and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $b=c_{1} b_{1}+\cdots c_{k} b_{k}$.
So $0=c_{1} b_{1}+\cdots+c_{k} b_{k}+(-1) b$.
(a) $\Rightarrow(\mathrm{c})$: Assume B is a basis of V.

Since B is linearly independent then $B \in\{L \subseteq V \mid L$ is linearly independent $\}$.
To show: If $v \in V$ and $v \notin B$ then $B \cup\{v\}$ is not linearly independent.

Assume $v \in V$ and $v \notin B$.
Since $\operatorname{span}_{\mathbb{F}}(B)=V$ then there exists $k \in \mathbb{Z}_{>0}$ and $b_{1}, \ldots, b_{k} \in B$ and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $v=c_{1} b_{1}+\ldots+c_{k} b_{k}$.
So $0=c_{1} b_{1}+\cdots+c_{k} b_{k}+(-1) v$.
So $B \cup\{v\}$ is not linearly independent.
(c) \Rightarrow (a): Assume S is a maximal element of $\{L \subseteq V \mid L$ is linearly independent $\}$.

To show: $\operatorname{span}_{\mathbb{F}}(S)=V$.
To show: $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$.
Let $v \in V$.
To show: $v \in \operatorname{span}_{\mathbb{F}}(S)$.
Case 1: $v \in S$. Then $v \in \operatorname{span}_{\mathbb{F}}(S)$.
Case 2: $v \notin S$.
Then $S \cup\{v\}$ is not linearly independent and S is linearly independent.
So there exist $k \in \mathbb{Z}_{>0}$ and $s_{1}, \ldots, s_{k} \in S$ and $c_{0}, c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that

$$
c_{0} \neq 0 \quad \text { and } \quad c_{0} v+c_{1} s_{1}+\cdots+c_{k} s_{k}=0 .
$$

Since \mathbb{F} is a field and $c_{0} \neq 0$ then

$$
v=\left(-c_{0}^{-1} c_{1}\right) s_{1}+\cdots+\left(-c_{0}^{-1} c_{k}\right) s_{k} .
$$

So $v \in \operatorname{span}_{\mathbb{F}}(S)$.
So $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$ and $V=\operatorname{span}_{\mathbb{F}}(S)$.
So S is linearly independent and $\operatorname{span}_{\mathbb{F}}(S)=V$.
So S is a basis of V.

Theorem F.2.8. - Let V be an \mathbb{F}-vector space. Then
(a) V has a basis, and
(b) Any two bases of V have the same number of elements.

Proof. -
(a) The idea is to use Zorn's lemma on the set $\{L \subseteq V \mid L$ is linearly independent $\}$, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn's Lemma. If S is a nonempty poset such that every chain in S has an upper bound then S has a maximal element.

Let $v \in V$ such that $v \neq 0$.
Then $L=\{v\}$ is linearly independent.
So $\{L \subseteq V \mid L$ is linearly independent $\}$ is not empty.
To show: If $\cdots \subseteq S_{k-1} \subseteq S_{k} \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set S that contains all the S_{k}.
Assume $\cdots \subseteq S_{k-1} \subseteq S_{k} \subseteq S_{k+1} \subseteq \cdots$ is a chain of linearly independent subsets of V.
Let $L=\bigcup_{k} S_{k}$.
To show L is linearly independent.
Assume $\ell \in \mathbb{Z}_{>0}$ and $s_{1}, \ldots, s_{\ell} \in L$.
Then there exists k such that $s_{1}, \ldots, s_{\ell} \in S_{k}$.
Since S_{k} is linearly independent then if $c_{1}, \ldots, c_{\ell} \in \mathbb{F}$ and $c_{1} s_{1}+\cdots+c_{\ell} s_{\ell}=0$ then $c_{1}=0, c_{2}=0, \ldots, c_{\ell}=0$.

So L is linearly independent.
So, if $\cdots \subseteq S_{k-1} \subseteq S_{k} \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set B that contains all the S_{k}.
Thus, by Zorn's lemma, $\{L \subseteq V \mid L$ is linearly independent $\}$ has a maximal element B.
By Proposition F.2.7, B is a basis of V.
(b) Let B and C be bases of V.

Case 1: V has a basis B with $\operatorname{Card}(B)<\infty$.
Let $b \in B$.
Then there exists $c \in C$ such that $c \notin \operatorname{span}_{\mathbb{F}}(B-\{b\})$.
Then $B_{1}=(B-\{b\}) \cup\{c\}$ is a basis with the same cardinality as B.
Since B is finite then, by repeating this process, we can, after a finite number of steps, create a basis B^{\prime} of V such that $B^{\prime} \subseteq C$ and $\operatorname{Card}\left(B^{\prime}\right)=\operatorname{Card}(B)$. Thus $\operatorname{Card}(B)=\operatorname{Card}\left(B^{\prime}\right) \leqslant \operatorname{Card}(C)$.
A similar argument with C in place of B gives that $\operatorname{Card}(B) \geqslant \operatorname{Card}(C)$.
So $\operatorname{Card}(B)=\operatorname{Card}(C)$.
Case 2: V has an infinite basis B.
Let C be a basis of V.
Define $P_{c b} \in \mathbb{F}$ for $c \in C$ and $b \in B$ by

$$
b=\sum_{c \in C} P_{c b} c, \quad \text { and let } \quad S_{b}=\left\{c \in C \mid P_{c b} \neq 0\right\} \quad \text { for } b \in B
$$

If $b \in B$ then S_{b} is a finite subset of C and $C=\bigcup_{b \in B} S_{b}, \quad$ since C is a minimal spanning set.
So $\operatorname{Card}(C) \leqslant \max \left\{\operatorname{Card}\left(S_{b}\right) \mid b \in B\right\} \leqslant \aleph_{0} \operatorname{Card}(B)$.
A similar argument with B and C switched shows that $\operatorname{Card}(B) \leqslant \aleph_{0} \operatorname{Card}(C)$.
So Card $(C) \leqslant \aleph_{0} \operatorname{Card}(B)=\operatorname{Card}(B) \leqslant \aleph_{0} \operatorname{Card}(C)=\operatorname{Card}(C)$.
Since $\operatorname{Card}(C) \leqslant \operatorname{Card}(B) \leqslant \operatorname{Card}(C)$ then $\operatorname{Card}(C)=\operatorname{Card}(B)$.

