F.2. Proofs: Vector Spaces

Proposition F.2.1. — Let V be an \mathbb{F} -vector space and let W be a subgroup of V. Then the cosets of W in V partition V.

Proof. — To show: (a) If $v \in V$ then there exists $v' \in V$ such that $v \in v' + W$. (b) If $(v_1 + W) \cap (v_2 + W) \neq \emptyset$ then $v_1 + W = v_2 + W$. (a) Let $v \in V$. Since $0 \in W$ then $v = v + 0 \in v + W$. So $v \in v + W$. (b) Assume $(v_1 + W) \cap (v_2 + W) \neq \emptyset$. To show: (ba) $v_1 + W \subseteq v_2 + W$. (bb) $v_2 + W \subseteq v_1 + W$. Let $a \in (v_1 + W) \cap (v_2 + W)$. Suppose $a = v_1 + w_1$ and $a = v_2 + w_2$ where $w_1, w_2 \in W$. Then $v_1 = v_1 + w_1 - w_1 = a - w_1 = v_2 + w_2 - w_1$ and $v_2 = v_2 + w_2 - w_2 = a - w_2 = v_1 + w_1 - w_2.$ (ba) Let $v \in v_1 + W$. Then there exists $w \in W$ such that $v = v_1 + w$. Since $w_2 - w_1 + w \in W$. $v = v_1 + w = v_2 + w_2 - w_1 + w \in v_2 + W.$ So $v_1 + W \subseteq v_2 + W$. (bb) Let $v \in v_2 + W$. Then there exists $w \in W$ such that $v = v_2 + w$. Since $w_1 - w_2 + w \in W$ then $v = v_2 + w = v_1 + w_1 - w_2 + w \in v_1 + W.$ So $v_2 + W \subseteq v_1 + W$. So $v_1 + W = v_2 + W$. So the cosets of W in V partition V.

Theorem F.2.2. — Let W be a subgroup of an \mathbb{F} -vector space V. Then W is a subspace of V if and only if V/W with operations given by

$$v_1 + W$$
) + $(v_2 + W) = (v_1 + v_2) + W$ and $c(v + W) = cv + W$,

is an \mathbb{F} -vector space.

(

Proof. —

 \implies : Assume W is a subspace of V.

To show: (a) $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$ is a well defined operation on V/W. (b) The operation given by c(v + W) = cv + W is well defined.

(c) If $v_1 + W, v_2 + W, v_3 + W \in V/W$ then

 $((v_1 + W) + (v_2 + W)) + (v_3 + W) = (v_1 + W) + ((v_2 + W) + (v_3 + W)).$ (d) If $v_1 + W, v_2 + W \in V/W$ then $(v_1 + W) + (v_2 + W) = (v_2 + W) + (v_1 + W).$ (e) 0 + W = W is the zero in V/W.

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020

(f) -v + W is the additive inverse of v + W. (g) If $c_1, c_2 \in F$ and $v + W \in V/W$, then $c_1(c_2(v + W)) = (c_1c_2)(v + W)$. (h) If $v + W \in V/W$ then 1(v + W) = v + W. (i) If $c \in \mathbb{F}$ and $v_1 + W, v_2 + W \in V/W$ then $c((v_1 + W) + (v_2 + W)) = c(v_1 + W) + c(v_2 + W).$ (j) If $c_1, c_2 \in \mathbb{F}$ and $v + W \in V/W$ then $(c_1 + c_2)(v + W) = c_1(v + W) + c_2(v + W)$. (a) To show: $V/W \times V/W \rightarrow V/W$ is a function. $(v_1 + W, v_2 + W) \mapsto (v_1 + v_2) + W$ Let $(v_1 + W, v_2 + W), (v_3 + W, v_4 + W) \in V/W \times V/W$ such that $(v_1 + W, v_2 + W) =$ $(v_3 + W, v_4 + W).$ Then $v_1 + W = v_3 + W$ and $v_2 + W = v_4 + W$. To show: $(v_1 + v_2) + W = (v_3 + v_4) + W$. To show: (aa) $(v_1 + v_2) + W \subseteq (v_3 + v_4) + W$. (ab) $(v_3 + v_4) + W \subseteq (v_1 + v_2) + W$. (aa) Since $v_1 + W = v_3 + W$ then $v_1 = v_1 + 0 \in v_3 + W$. So there exists $w_1 \in W$ such that $v_1 = v_3 + w_1$. Similarly there exists $w_2 \in W$ such that $v_2 = v_4 + w_2$. Let $t \in (v_1 + v_2) + W$. Then there exists $w \in W$ such that $t = v_1 + v_2 + w$. Since addition is commutative then $t = v_1 + v_2 + w$ $= v_3 + w_1 + v_4 + w_2 + w_3$ $= v_3 + v_4 + w_1 + w_2 + w_3$ So $t = (v_3 + v_4) + (w_1 + w_2 + w) \in v_3 + v_4 + W$. So $(v_1 + v_2) + W \subseteq (v_3 + v_4) + W$. (ab) Since $v_1 + W = v_3 + W$ then there exists $w_1 \in W$ such that $v_1 + w_1 = v_3$. Since $v_2 + W = v_4 + W$ there exists $w_2 \in W$ such that $v_2 + w_2 = v_4$. Let $t \in (v_3 + v_4) + W$. Then there exists $w \in W$ such that $t = v_3 + v_4 + w$. Since addition is commutative then $t = v_3 + v_4 + w$ $= v_1 + w_1 + v_2 + w_2 + w_3$ $= v_1 + v_2 + w_1 + w_2 + w_1$ So $t = (v_1 + v_2) + (w_1 + w_2 + w) \in (v_1 + v_2) + W$. So $(v_3 + v_4) + W \subseteq (v_1 + v_2) + W$. So $(v_1 + v_2) + W = (v_3 + v_4) + W$. So the operation given by $(v_1 + W) + (v_3 + W) = (v_1 + v_3) + W$ is a well defined operation on V/W.

(b) To show:

$$\begin{array}{cccc} \mathbb{F} \times V/W & \to & V/W \\ (c, v+W) & \mapsto & cv+W \end{array} \quad \text{is a function.} \end{array}$$

Let $(c_1, v_1 + W), (c_2, v_2 + W) \in (\mathbb{F} \times V/W)$ such that $(c_1, v_1 + W) = (c_2, v_2 + W).$

Then $c_1 = c_2$ and $v_1 + W = v_2 + W$. To show: $c_1v_1 + W = c_2v_2 + W$. To show: (ba) $c_1v_1 + W \subseteq c_2v_2 + W$. (bb) $c_2v_2 + W \subseteq c_1v_1 + W$. (ba) Since $v_1 + W = v_2 + W$ then there exists $w_1 \in W$ such that $v_1 = v_2 + w_1$. Let $t \in c_1v_1 + W$. Then there exists $w \in W$ such that $t = c_1v_1 + w$. Since $c_1 = c_2$ then

$$t = c_1 v_1 + w$$

= $c_2 (v_2 + w_1) + w$
= $c_2 v_2 + c_2 w_1 + w$,

Since W is a subspace then $c_2w_1 \in W$ and $c_2w_1 + w \in W$. So $t = c_2v_2 + c_2w_1 + w \in c_2v_2 + W$. So $c_1v_1 + W \subseteq c_2v_2 + W$.

(bb) Since $v_1 + W = v_2 + W$ then there exists $w_2 \in W$ such that $v_2 = v_1 + w_2$. Let $t \in c_2v_2 + W$. Then there exists $w \in W$ such that $t = c_2v_2 + w$. Since $c_2 = c_1$ then

$$t = c_2 v_2 + w$$

= $c_1(v_1 + w_2) + w$
= $c_1 v_1 + c_1 w_2 + w$,

Since W is a subspace then $c_1w_2 \in W$ and $c_1w_2 + w \in W$. So $t = c_1v_1 + c_1w_2 + w \in c_1v_1 + W$. So $c_2v_2 + W \subseteq c_1v_1 + W$. So $c_1v_1 + W = c_2v_2 + W$. So the operation is well defined.

(c) By the associativity of addition in V and the definition of the operation in V/W, if $v_1 + W$, $v_2 + W$, $v_3 + W \in V/W$ then

$$((v_1 + W) + (v_2 + W)) + (v_3 + W) = ((v_1 + v_2) + W) + (v_3 + W)$$
$$= ((v_1 + v_2) + v_3) + W$$
$$= (v_1 + (v_2 + v_3)) + W$$
$$= (v_1 + W) + ((v_2 + v_3) + W)$$
$$= (v_1 + W) + ((v_2 + W) + (v_3 + W))$$

(d) By the commutativity of addition in V and the definition of the operation in V/W, if $v_1 + W$, $v_2 + W \in V/W$ then

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W = (v_2 + v_1) + W = (v_2 + W) + (v_1 + W).$$

(e) If $v + W \in V/W$ then

$$W + (v + W) = (0 + v) + W$$
$$= v + W$$
$$= (v + 0) + W$$
$$= (v + W) + W$$

So the coset W = 0 + W is the zero in V/W.

(f) Let $v + W \in V/W$. Then

$$(v + W) + (-v + W) = v + (-v) + W$$

= 0 + W
= W
= (-v + v) + W
= (-v + W) + v + W

Thus (-v) + W is the additive inverse of v + W.

(g) Assume $c_1, c_2 \in \mathbb{F}$ and $v + W \in V/W$. Then, by definition of the operation,

$$c_1(c_2(v+W)) = c_1(c_2v+W) = c_1(c_2v) + W = (c_1c_2)v + W = (c_1c_2)(v+W).$$

(h) Assume $v + W \in V/W$. Then, by definition of the operation,

$$1(v+W) = (1v) + W$$
$$= v + W.$$

(i) Assume $c \in \mathbb{F}$ and $v_1 + W, v_2 + W \in V/W$. Then

$$c((v_1 + W) + (v_2 + W)) = c((v_1 + v_2) + W)$$

= $c(v_1 + v_2) + W$
= $(cv_1 + cv_2) + W$
= $(cv_1 + cv_2) + W$
= $(cv_1 + W) + (cv_2 + W)$
= $c(v_1 + W) + c(v_2 + W)$.

(j) Assume $c_1, c_2 \in F$ and $v + W \in V/W$. Then

$$(c_1 + c_2)(v + W) = ((c_1 + c_2)v) + W$$

= $(c_1v + c_2v) + W$
= $(c_1v + W) + (c_2v + W)$
= $c_1(v + W) + c_2(v + W).$

So V/W is a vector space over \mathbb{F} .

 \Leftarrow : Assume W is a subgroup of V and V/W is a vector space over \mathbb{F} with action given by c(v+W) = cv+W. To show: W is a subspace of V. To show: If $c \in \mathbb{F}$ and $w \in W$ then $cw \in W$. First we show: If $w \in W$ then w + W = W. To show: (a) $w + W \subseteq W$. (b) $W \subseteq w + W$. (a) Let $k \in w + W$. Then there exists $w_{-1} \in W$ such that $k = w + w_1$. Since W is a subgroup then $w + w_1 \in W$. So $w + W \subseteq W$. (b) Let $k \in W$. Since $k - w \in W$ then $k = w + (k - w) \in w + W$. So $W \subseteq w + W$. Now assume $c \in \mathbb{F}$ and $w \in W$. Then, by definition of the operation on V/W, cw + W = c(w + W)= c(0 + W) $= c \cdot 0 + W$ = 0 + W

So $cw = cw + 0 \in W$. So W is a subspace of V.

Proposition F.2.3. — Let $T: V \to W$ be a linear transformation. Let 0_V and 0_W be the zeros for V and W respectively. Then

= W.

- (a) $T(0_V) = 0_W$.
- (b) For any $v \in V$, T(-v) = -T(v).

Proof. —

(a) Add $-T(0_V)$ to both sides of the following equation,

$$T(0_V) = T(0_V + 0_V) = T(0_V) + T(0_V).$$

(b) Since $T(v) + T(-v) = T(v + (-v)) = T(0_V) = 0_W$ and
 $T(-v) + T(v) = T((-v) + v) + T(0_V) = 0_W$
then $-T(v) = T(-v).$

Proposition F.2.4. — Let $T: V \to W$ be a linear transformation. Then

- (a) ker T is a subspace of V.
- (b) $\operatorname{im} T$ is a subspace of W.

Proof. — Let 0_V and 0_W be the zeros in V and W, respectively.

- (a) By condition (a) in the definition of linear transformation, T is a group homomorphism.
 - To show: (aa) If $k_1, k_2 \in \ker T$ then $k_1 + k_2 \in \ker T$. (ab) $0_V \in \ker T$. (ac) If $k \in \ker T$ then $-k \in \ker T$. (ad) If $c \in \mathbb{F}$ and $k \in \ker T$ then $ck \in \ker T$. (aa) Assume $k_1, k_2 \in \ker T$. Then $T(k_1) = 0_W$ and $T(k_2) = 0_W$.

By condition (a) in the definition of a linear transformation,

$$T(k_1 + k_2) = T(k_1) + T(k_2) = 0 + 0 = 0.$$

So $k_1 + k_2 \in \ker T$.

- (ab) By Proposition F.2.1(a), $T(0_V) = 0_W$. So $0_V \in \ker T$.
- (ac) Assume $k \in \ker T$. By Proposition F.2.1(b), T(-k) = -T(k). So $T(-k) = -T(k) = -0_W = 0_W$, and $-0_W = 0_W$ since $0_W + 0_W = 0_W$. So $-k \in \ker T$.
- (ad) Assume $c \in \mathbb{F}$ and $k \in \ker T$.

Then, by the definition of linear transformation,

$$T(ck) = cT(k) = c 0_W = 0_W$$
, and $c 0_W = 0_W$,

by adding $-c 0_W$ to each side of $c 0_W + c 0_W = c(0_W + 0_W) = c 0_W$. So $T(ck) = 0_W$ and $ck \in \ker T$.

So ker T is a subspace of V.

- (b) By condition (a) in the definition of linear transformation, T is a group homomorphism.
 - To show: (ba) If $w_1, w_2 \in \operatorname{im} T$ then $w_1 + w_2 \in \operatorname{im} T$.
 - (bb) $0_W \in \operatorname{im} T$.

(bc) If $w \in \operatorname{im} T$ then $-w \in \operatorname{im} T$.

(bd) If $c \in \mathbb{F}$ and $w \in \operatorname{im} T$ then $ck \in \operatorname{im} T$.

(ba) Assume $w_1, w_2 \in \operatorname{im} T$.

Then there exist $v_1, v_2 \in V$ such that $T(v_1) = w_1$ and $T(v_2) = w_2$. By condition (a) in the definition of linear transformation,

$$T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2.$$

So $w_1 + w_2 \in \operatorname{im} T$.

- (bb) By Proposition F.2.1(a), $T(0_V) = 0_W$. So $0_W \in \text{im } T$.
- (bc) Assume $w \in \operatorname{im} T$. The there exists $v \in V$ such that T(v) = w. By Proposition F.2.1(b), T(-v) = -T(v) = -w. So $-w \in \operatorname{im} T$.
- (bd) To show: If $c \in \mathbb{F}$ and $a \in \operatorname{im} T$ then $ca \in \operatorname{im} T$. Assume $c \in \mathbb{F}$ and $c \in \operatorname{im} T$. Then there exists $v \in V$ such that a = T(v). By the definition of linear transformation,

$$ca = cT(v) = T(cv).$$

So $ca \in \operatorname{im} T$. So $\operatorname{im} T$ is a subspace of W.

Proposition F.2.5. — Let $T: V \to W$ be a linear transformation. Let 0_V be the zero in V. Then

- (a) ker $T = (0_V)$ if and only if T is injective.
- (b) imT = W if and only if T is surjective.

Proof. — Let 0_V and 0_W be the zeros in V and W respectively.

(a) \implies : Assume ker $T = (0_V)$. To show: If $T(v_1) = T(v_2)$ then $v_1 = v_2$. Assume $T(v_1) = T(v_2)$. Since T is a linear transformation then

$$0_W = T(v_1) - T(v_2) = T(v_1 - v_2).$$

So $v_1 - v_2 \in \ker T$. Since $\ker T = (0_V)$ then $v_1 - v_2 = 0_V$. So $v_1 = v_2$. So T is injective.

 $\begin{array}{l} \Leftarrow : \text{ Assume } T \text{ is injective} \\ \text{To show: (aa) } (0_V) \subseteq \ker T. \\ (ab) \ker T \subseteq (0_V). \\ \text{(aa) Since } T(0_V) = 0_W \text{ then } 0_V \in \ker T. \\ \text{So } (0_V) \subseteq \ker T. \\ \text{(ab) Let } k \in \ker T. \\ \text{(ab) Let } k \in \ker T. \\ \text{Then } T(k) = 0_W. \\ \text{So } T(k) = T(0_V). \\ \text{Thus, since } T \text{ is injective then } k = 0_V. \\ \text{So } \ker T \subseteq (0_V). \\ \text{So } \ker T = (0_V). \end{array}$

(b) \implies : Assume im T = W. To show: If $w \in W$ then there exists $v \in V$ such that T(v) = w. Assume $w \in W$. Then $w \in \text{im}T$. So there exists $v \in V$ such that T(v) = w. So T is surjective.

 $\begin{array}{l} \longleftarrow: \text{ Assume } T \text{ is surjective.} \\ \text{To show: (ba) } \text{im} T \subseteq W. \\ \quad (\text{bb) } W \subseteq \text{im} T. \\ \text{(ba) Let } x \in \text{im} T. \\ \text{ Then there exists } v \in V \text{ such that } x = T(v). \\ \text{ By the definition of } T, T(v) \in W. \\ \text{ So } x \in W. \end{array}$

So im $T \subseteq W$. (bb) Assume $x \in W$. Since T is surjective there exists $v \in V$ such that T(v) = x. So $x \in \operatorname{im} T$. So $W \subseteq \operatorname{im} T$. So im T = W.

Theorem F.2.6. —

(a) Let $T: V \to W$ be a linear transformation and let $K = \ker T$. Define

$$\begin{array}{rccc} T \colon & V/\ker T & \to & W \\ & v+K & \mapsto & T(v). \end{array}$$

Then \hat{T} is a well defined injective linear transformation.

(b) Let $T: V \to W$ be a linear transformation and define

$$\begin{array}{rcccc} T' \colon & V & \to & \operatorname{im} T \\ & v & \mapsto & T(v). \end{array}$$

Then T' is a well defined surjective linear transformation.

(c) If $T: V \to W$ is a linear transformation, then

 $V/\ker T \simeq \operatorname{im} T$

where the isomorphism is a vector space isomorphism.

Proof. —

(a) To show: (aa) \hat{T} is a function.

(ab) \hat{T} is injective.

(ac) \hat{T} is a linear transformation.

(aa) To show: (aaa) If $v \in V$ then $\hat{T}(v+K) \in W$.

(aab) If $v_1 + K = v_2 + K \in V/K$ then $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$. (aaa) Assume $v \in V$. Then $\hat{T}(v + K) = T(v)$ and $T(v) \in W$, by the definition of \hat{T} and T.

(aab) Assume $v_1 + K = v_2 + K$. Then there exists $k \in K$ such that $v_1 = v_2 + k$. To show: $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$, i.e. To show: $T(v_1) = T(v_2)$. Since $k \in \ker T$ then T(k) = 0 and so $T(v_1) = T(v_2 + k) = T(v_2) + T(k) = T(v_2)$. So $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$. So \hat{T} is well defined. (ab) To show: If $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$ then $v_1 + K = v_2 + K$. Assume $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$. Then $T(v_1) = T(v_2)$. So $T(v_1) - T(v_2) = 0$. So $T(v_1 - v_2) = 0$. So $v_1 - v_2 \in \ker T$.

So there exists $k \in \ker T$ such that $v_1 - v_2 = k$. So there exists $k \in \ker T$ such that $v_1 = v_2 + k$. To show: (aba) $v_1 + K \subseteq v_2 + K$. (abb) $v_2 + K \subseteq v_1 + K$. (aba) Let $v \in v_1 + K$. Then there exists $k_1 \in K$ such that $v = v_1 + k_1$. Since $k + k_1 \in K$ then $v = v_2 + k + k_1 \in v_2 + K$. So $v_1 + K \subseteq v_2 + K$. (abb) Let $v \in v_2 + K$. Then there exists $k_2 \in K$ such that $v = v_2 + k_2$. Since $-k + k_2 \in K$ then $v = v_1 - k + k_2 \in v_1 + K$. So $v_2 + K \subseteq v_1 + K$. So $v_1 + K = v_2 + K$. So \hat{T} is injective.

- (ac) To show: (aca) If $v_1 + K$, $v_2 + K \in V/K$ then $\hat{T}(v_1 + K) + \hat{T}(v_2 + K) = \hat{T}((v_1 + K) + (v_2 + K)).$
 - (acb) If $c \in \mathbb{F}$ and $v + K \in V/K$ then $\hat{T}(c(v+K)) = c\hat{T}(v+K)$. (aca) Let $v_1 + K, v_2 + K \in V/K$.

Since T is a homomorphism,

$$T(v_1 + K) + T(v_2 + K) = T(v_1) + T(v_2)$$

= $T(v_1 + v_2)$
= $\hat{T}((v_1 + v_2) + K)$
= $\hat{T}((v_1 + K) + (v_2 + K))$

(acb) Let
$$c \in \mathbb{F}$$
 and $v + K \in V/K$.
Since T is a homomorphism,

$$\hat{T}(c(v+K)) = \hat{T}(cv+K)$$
$$= T(cv)$$
$$= cT(v)$$
$$= c\hat{T}(v+K)$$

So \hat{T} is a linear transformation.

So T is a well defined injective linear transformation.

- (b) To show: (ba) T' is a function.
 - (bb) T' is surjective.
 - (bc) T' is a linear transformation.
 - (ba) By the definition of $\operatorname{im} T$, if $v \in V$ then $T(v) \in \operatorname{im} T$. Thus, since T is a function then T' is a function.
 - (bb) Since $\operatorname{im} T = \{T(v) \mid v \in V\}$ then if $w \in \operatorname{im} T$ then there exists $v \in V$ such that T(v) = w.

Since T'(v) = T(v) = w then T' is surjective.

(bc) To show: (bca) If $v_1, v_2 \in V$ then $T'(v_1 + v_2) = T'(v_1) + T'(v_2)$. (bcb) If $c \in F$ and $v \in V$ then T'(cv) = cT'(v).

(bca) Let
$$v_1, v_2 \in V$$

Then, since T is a linear transformation,

$$T'(v_1 + v_2) = T(v_1 + v_2) = T(v_1) + T(v_2) = T'(v_1) + T'(v_2).$$

(bcb) Let $v_1, v_2 \in V$.

Then, since T is a linear transformation,

$$T'(cv) = T(cv) = cT(v) = cT'(v)$$

So T' is a linear transformation.

So T' is a well defined surjective linear transformation.

(c) Let $K = \ker T$.

By (a), the function

$$\begin{array}{rccc} \hat{T} \colon & V/K & \to & W \\ & v+K & \mapsto & T(v) \end{array}$$

is a well defined injective linear transformation. By (b), the function

$$\hat{T}': \quad V/K \quad \to \quad \inf \hat{T} \\ v+K \quad \mapsto \quad \hat{T}(v+K) = T(v)$$

is a well defined surjective linear transformation.

To show: (ca) $\operatorname{im} \hat{T} = \operatorname{im} T$. (cb) \hat{T}' is injective. (ca) To show: (caa) $\operatorname{im} \hat{T} \subseteq \operatorname{im} T$. (cab) im $T \subset im \hat{T}$. (caa) Let $w \in \operatorname{im} \hat{T}$. Then there is some $v + K \in V/K$ such that $\hat{T}(v + K) = w$. Let $v' \in v + K$. Then there exists $k \in K$ such that v' = v + k. Then, since T is a linear transformation and T(k) = 0, T(v') = T(v+k)= T(v) + T(k)=T(v) $=\hat{T}(v+K)$ = w.So $w \in \operatorname{im} T$. So $\operatorname{im} \tilde{T} \subseteq \operatorname{im} T$. (cab) Let $w \in \text{im}T$. Then there is some $v \in V$ such that T(v) = w. So $\hat{T}(v+K) = T(v) = w$. So $w \in \operatorname{im} \hat{T}$. So $\operatorname{im} T \subseteq \operatorname{im} \hat{T}$. So $\operatorname{im} T = \operatorname{im} \hat{T}$. (cb) To show: If $\hat{T}'(v_1 + K) = \hat{T}'(v_2 + K)$ then $v_1 + K = v_2 + K$. Assume $\hat{T}'(v_1 + K) = \hat{T}'(v_2 + K).$ Then $\hat{T}(v_1 + K) = \hat{T}(v_2 + K).$ Since \hat{T} is injective then $v_1 + K = v_2 + K$. So \hat{T}' is injective.

Thus,

$$\begin{array}{rccc} \hat{T}' \colon & V/K & \to & \mathrm{im}\hat{T} \\ & v+K & \mapsto & T(v) \end{array}$$

is a well defined bijective linear transformation.

Proposition F.2.7. — Let V be an \mathbb{F} -vector space and let B be a subset of V. The following are equivalent:

- (a) B is a basis of V.
- (b) B is a minimal element of $\{S \subseteq V \mid span_{\mathbb{F}}(S) = V\}$.
- (c) B is a maximal element of $\{L \subseteq V \mid L \text{ is linearly independent}\}$.

(In (b) and (c) the ordering is by inclusion.)

(b) \Rightarrow (a): Let $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F}}(S) = V$.

To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is a basis.

To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is linearly independent. Proof by contrapositive.

To show: If S is not linearly independent then S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S) = V$.

Assume S is not linearly independent.

To show: There exists $s \in S$ such that $\operatorname{span}_{\mathbb{F}}(S - \{s\}) = V$.

Since S is linearly independent then there exist $k \in \mathbb{Z}_{>0}$ and $s_1, \ldots, s_k \in S$ and $c_1, \ldots, c_k \in \mathbb{F}$ and $i \in \{1, \ldots, k\}$ such that $c_1s_1 + \cdots + c_ks_k = 0$ and $c_i \neq 0$. Let $s = s_i$.

Using that \mathbb{F} is a field and $c_i \neq 0$ then

$$s = s_i = c_i^{-1}(c_1s_1 + \dots + c_{i-1}s_{i-1} + c_{i+1}s_{i+1} + \dots + s_kc_k)$$

= $c_i^{-1}c_1s_1 + \dots + c_i^{-1}c_{i-1}s_{i-1} + c_i^{-1}c_{i+1}s_{i+1} + \dots + c_i^{-1}c_ks_k.$

So
$$V = \operatorname{span}_{\mathbb{F}}(S) = \operatorname{span}_{\mathbb{F}}(S - \{s\})$$

So S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S) = V$.

(a) \Rightarrow (b): Proof by contrapositive.

To show: If B is not minimal element of $\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$ then B is not a basis of V.

Assume B is not minimal element of $\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. So there exists $b \in B$ such that $\operatorname{span}_{\mathbb{F}}(B - \{b\}) \neq V$. To show: (aa) $B \in \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. (ab) If $b \in B$ then $B - \{b\} \notin \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. (aa) Since $\operatorname{span}_{\mathbb{F}}(B) = V$ then $B \in \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. (ab) Assume $b \in B$. To show: $B - \{b\} \notin \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. To show: $\operatorname{span}_{\mathbb{F}}(B - \{b\}) \neq V$. Since $\operatorname{span}_{\mathbb{F}}(B) = V$ then there exist $k \in \mathbb{Z}_{>0}, b_1, \ldots, b_k \in B$ and $c_1, \ldots, c_k \in \mathbb{F}$ such that $b = c_1b_1 + \cdots + c_kb_k$. So $0 = c_1b_1 + \cdots + c_kb_k + (-1)b$.

(a) \Rightarrow (c): Assume *B* is a basis of *V*.

Since B is linearly independent then $B \in \{L \subseteq V \mid L \text{ is linearly independent}\}$. To show: If $v \in V$ and $v \notin B$ then $B \cup \{v\}$ is not linearly independent.

Assume $v \in V$ and $v \notin B$. Since $\operatorname{span}_{\mathbb{F}}(B) = V$ then there exists $k \in \mathbb{Z}_{>0}$ and $b_1, \ldots, b_k \in B$ and $c_1, \ldots, c_k \in \mathbb{F}$ such that $v = c_1b_1 + \ldots + c_kb_k$. So $0 = c_1b_1 + \cdots + c_kb_k + (-1)v$. So $B \cup \{v\}$ is not linearly independent.

(c) \Rightarrow (a): Assume S is a maximal element of $\{L \subseteq V \mid L \text{ is linearly independent}\}$.

To show: $\operatorname{span}_{\mathbb{F}}(S) = V$. To show: $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$. Let $v \in V$. To show: $v \in \operatorname{span}_{\mathbb{F}}(S)$. Case 1: $v \in S$. Then $v \in \operatorname{span}_{\mathbb{F}}(S)$. Case 2: $v \notin S$. Then $S \cup \{v\}$ is not linearly independent and S is linearly independent. So there exist $k \in \mathbb{Z}_{>0}$ and $s_1, \ldots, s_k \in S$ and $c_0, c_1, \ldots, c_k \in \mathbb{F}$ such that

 $c_0 \neq 0$ and $c_0 v + c_1 s_1 + \dots + c_k s_k = 0.$

Since \mathbb{F} is a field and $c_0 \neq 0$ then

$$v = (-c_0^{-1}c_1)s_1 + \dots + (-c_0^{-1}c_k)s_k.$$

So $v \in \operatorname{span}_{\mathbb{F}}(S)$. So $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$ and $V = \operatorname{span}_{\mathbb{F}}(S)$. So S is linearly independent and $\operatorname{span}_{\mathbb{F}}(S) = V$. So S is a basis of V.

Theorem F.2.8. — Let V be an \mathbb{F} -vector space. Then

(a) V has a basis, and

(b) Any two bases of V have the same number of elements.

Proof. —

(a) The idea is to use Zorn's lemma on the set $\{L \subseteq V \mid L \text{ is linearly independent}\}$, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn's Lemma. If S is a nonempty poset such that every chain in S has an upper bound then S has a maximal element.

Let $v \in V$ such that $v \neq 0$. Then $L = \{v\}$ is linearly independent. So $\{L \subseteq V \mid L \text{ is linearly independent}\}$ is not empty. To show: If $\cdots \subseteq S_{k-1} \subseteq S_k \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set S that contains all the S_k . Assume $\cdots \subseteq S_{k-1} \subseteq S_k \subseteq S_{k+1} \subseteq \cdots$ is a chain of linearly independent subsets of V. Let $L = \bigcup_k S_k$. To show L is linearly independent. Assume $\ell \in \mathbb{Z}_{>0}$ and $s_1, \ldots, s_\ell \in L$. Then there exists k such that $s_1, \ldots, s_\ell \in S_k$. Since S_k is linearly independent then if $c_1, \ldots, c_\ell \in \mathbb{F}$ and $c_1s_1 + \cdots + c_\ell s_\ell = 0$ then $c_1 = 0, c_2 = 0, \ldots, c_\ell = 0$.

So L is linearly independent.

So, if $\cdots \subseteq S_{k-1} \subseteq S_k \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set B that contains all the S_k .

Thus, by Zorn's lemma, $\{L \subseteq V \mid L \text{ is linearly independent}\}$ has a maximal element B.

By Proposition F.2.7, B is a basis of V.

(b) Let B and C be bases of V.

Case 1: V has a basis B with $\operatorname{Card}(B) < \infty$. Let $b \in B$. Then there exists $c \in C$ such that $c \notin \operatorname{span}_{\mathbb{F}}(B - \{b\})$. Then $B_1 = (B - \{b\}) \cup \{c\}$ is a basis with the same cardinality as B. Since B is finite then, by repeating this process, we can, after a finite number of steps, create a basis B' of V such that $B' \subseteq C$ and $\operatorname{Card}(B') = \operatorname{Card}(B)$. Thus $\operatorname{Card}(B) = \operatorname{Card}(B') \leqslant \operatorname{Card}(C)$. A similar argument with C in place of B gives that $\operatorname{Card}(B) \ge \operatorname{Card}(C)$. So $\operatorname{Card}(B) = \operatorname{Card}(C)$.

Case 2: V has an infinite basis B.

(

Let C be a basis of V.

Define $P_{cb} \in \mathbb{F}$ for $c \in C$ and $b \in B$ by

$$b = \sum_{c \in C} P_{cb}c$$
, and let $S_b = \{c \in C \mid P_{cb} \neq 0\}$ for $b \in B$.

If $b \in B$ then S_b is a finite subset of C and

$$C = \bigcup_{b \in B} S_b$$
, since C is a minimal spanning set.

So $\operatorname{Card}(C) \leq \max{\operatorname{Card}(S_b) \mid b \in B} \leq \aleph_0 \operatorname{Card}(B).$

A similar argument with B and C switched shows that $\operatorname{Card}(B) \leq \aleph_0 \operatorname{Card}(C)$. So $\operatorname{Card}(C) \leq \aleph_0 \operatorname{Card}(B) = \operatorname{Card}(B) \leq \aleph_0 \operatorname{Card}(C) = \operatorname{Card}(C)$.

Since $\operatorname{Card}(C) \leq \operatorname{Card}(B) \leq \operatorname{Card}(C)$ then $\operatorname{Card}(C) = \operatorname{Card}(B)$.