
CHAPTER R

STRUCTURE AND ACTION: ALGEBRAS AND
MODULES

The standard abstract algebra course presents the basic properties of groups, rings, and
fields. The motivation is to study the properties of the number systems that we use,
some of these being:

(a) the positive integers, Z>0 = {1, 2, 3, . . .},
(b) the integers, Z = {. . . ,�2,�1, 0, 1, 2, . . .},
(c) the rational numbers, Q =

�
p

q
| p 2 Z, q 2 Z>0

 
,

(d) the real numbers, R,

with the operations of addition and multiplication. We need to find exactly what prop-
erties these structures have and what the implications of these properties are.

R.1. Rings=Z-algebras

We start by identifying the key properties of the integers Z, as a number system. The
terms “Z-algebra” and “ring” are synonyms, they mean exactly the same thing.

Definition R.1.1. —

• A Z-algebra, or ring, is a set A with two operations, addition +: A ⇥ A ! A
and multiplication ⇥ : A⇥A ! A

�
write a+ b instead of +(a, b) and ab or a · b

instead of ⇥(a, b)
�
, such that

(a) If r1, r2, r3 2 A then (r1 + r2) + r3 = r1 + (r2 + r3),
(b) If r1, r2 2 A then r1 + r2 = r2 + r1,
(c) There exists a zero (sometimes called the additive identity), 0 2 A, such

that if r 2 A then 0 + r = r,
(d) If r 2 A then there exists an additive inverse, �r 2 A, such that r+(�r) =

0,
(e) If r1, r2, r3 2 A then (r1r2)r3 = r1(r2r3),
(f) There exists an identity (sometimes called the multiplicative identity),

1 2 A, such that if r 2 A then 1 · r = r · 1 = r,
(g) Distributive law. If r, s, t 2 A then

r(s+ t) = rs+ rt and (s+ t)r = sr + tr.

• A subalgebra, or subring, of a Z-algebra A is a subset S ✓ A such that
(a) If s1, s2 2 S then s1 + s2 2 S,
(b) 0 2 S,
(c) If s 2 S then �s 2 S.
(d) If s1, s2 2 S then s1s2 2 S.
(e) 1 2 S.
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• The zero Z-algebra, or zero ring, {0} is the set containing only 0 with the
operations + and ⇥ given by 0 + 0 = 0 and 0 · 0 = 0 respectively.

The properties (a), (b), (c) and (d) in the definition of a Z-algebra A mean that A is an
abelian group under addition.

The definition of a ring, or Z-algebra, is motivated by the properties of the integers. As
a result, knowledge about the integers is an important tool in working with Z-algebra.

HW: Show that the additive identity 0 2 A is unique.

HW: Show that if r 2 A then its additive inverse �r 2 A is unique.

HW: Show that the identity 1 2 A is unique.

HW: Show that if r 2 A then 0 · r = 0 by first showing that 0 · r = 0 · r + 0 · r.
HW: Show that if r 2 A and 1 2 A is the identity in A then (�1) · r = r · (�1) = �r.

Examples of rings are:

(a) The integers Z,
(b) The n⇥ n matrices Mn(Q),
(c) Polynomial rings Q[x].

Ring homomorphisms are used to compare rings. A ring homomorphism must pre-
serve the structures that distinguish a ring: the addition, the multiplication and the
multiplicative identity (the additive identity and the additive inverse come “for free”, see
Proposition R.1.1).

Definition R.1.2. — Let R and A be Z-algebras with identities 1R and 1A respectively.

• A Z-algebra homomorphism, of ring homomorphism,ring homo is a function f : R ! A
such that
(a) If r1, r2 2 R then f(r1 + r2) = f(r1) + f(r2),
(b) If r1, r2 2 R then f(r1r2) = f(r1)f(r2),
(c) f(1R) = 1A.

• A ring isomorphism, or Z-algebra isomorphism, is a ring homomorphism
f : R ! A such that the inverse function f�1 : A ! R exists and f�1 is a ring
homomorphism.

• Two Z-algebrasR and A are isomorphic, R ' A, if there exists a ring isomorphism
f : R ! A between them.

Two rings are isomorphic if both the elements of the rings and their operations match up
exactly. Think of two Z-algebras that are isomorphic as being “the same”.

HW: Show that f : R ! A is a ring isomorphism if and only if f : R ! A is a bijective
ring homomorphism.

HW: Give an example of two Z-algebras R and A that are isomorphic as groups but not
as Z-algebras.

In the case of groups, condition (b) in the definition of ring homomorphism forced con-
dition (c) on us (see Proposition G.1.1). This does not happen here since rings don’t
necessarily have multiplicative inverses.

Proposition R.1.1. — Let f : R ! A be a Z-algebra homomorphism. Let 0R and 0A
be the zeros for R and A respectively. Then
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(a) f(0R) = 0A,

(b) If r 2 R then f(�r) = �f(r).

R.1.1. Cosets. —

Definition R.1.3. —

• An additive subgroup of a ring R is a subset I ✓ R of R such that
(a) If h1, h2 2 I then h1 + h2 2 I,
(b) 0 2 I,
(c) If h 2 I then �h 2 I.

Let A be a Z-algebra and let I be an additive subgroup of A. We will use the subgroup
I to divide up the Z-algebra A.

Definition R.1.4. —

• A coset of I in A is a set r + I = {r + i | i 2 I} where r 2 A.

• A/I (pronounced “A mod I”) is the set of cosets of I in A.

Proposition R.1.2. — Let A be a Z-algebra and let I be an additive subgroup of A.
Then the cosets of I in A partition A.

Notice the analogy between Proposition R.1.2 and Proposition F.2.2 and Proposition
R.2.2 and Proposition G.1.2.

R.1.2. Quotient Rings $ Ideals. — Let A be a Z-algebra and let I be an additive
subgroup of A. We can try to make the set A/I of cosets of I into a ring by defining both
an addition operation and a multiplication operation on cosets. The only problem is that
this doesn’t work for the cosets of just any additive subgroup, the subgroup has to have
special properties.

HW: Let A be a ring and let I be an additive subgroup of A. Show that I is a normal
subgroup of A.

Definition R.1.5. —

• An ideal is a subset I of a ring A such that
(a) If a, b 2 I then a+ b 2 I,
(b) If i 2 I and r 2 A then ir 2 I and ri 2 I.

• The zero ideal {0} of A is the ideal containing only the zero element of A.

HW: Show that if I is an ideal of a Z-algebra A then 0 2 I and if a 2 I then �a 2 I.

HW: Show that an ideal I of a ring R is an additive subgroup of a ring R.

Proposition R.1.3. — Let I be an additive subgroup of a Z-algebra R. I is an ideal of
R if and only if R/I with operations given by

(r1 + I) + (r2 + I) = (r1 + r2) + I and (r1 + I)(r2 + I) = r1r2 + I

is a ring.

Notice the analogy between Theorem F.2.3, Theorem R.2.3, Theorem R.1.3 and Theorem
G.1.5.

Definition R.1.6. —
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• The quotient Z-algebra, A/I, is the Z-algebra of cosets of an ideal I of a Z-
algebra A with operations given by (r1 + I) + (r2 + I) = (r1 + r2) + I and (r1 +
I)(r2 + I) = r1r2 + I.

So we have successfully made A/I into a ring when I is an ideal of A.

HW: Show that if 1 2 I, then I = A and A/I ' (0).

R.1.3. Kernel and image of ring homomorphism. —

Definition R.1.7. —

• The kernel of a Z-algebra homomorphism f : R ! A is the set

ker f = {r 2 R | f(r) = 0A},
where 0A is the zero in A.

• The image of a ring homomorphism f : R ! A is the set

imf = {f(r) | r 2 R}.

Note that ker f = {r 2 R | f(r) = 0A} not {r 2 R | f(r) = 1A}. If ker f was
{r 2 R | f(r) = 1A} then ker f would not necessarily be a subgroup of R (not to
mention an ideal) and we couldn’t even hope to get homomorphism theorems like those
for groups.

Proposition R.1.4. — Let f : R ! A be a ring homomorphism. Then

(a) ker f is an ideal of R.

(b) imf is a subring of A.

Proposition R.1.5. — Let f : R ! A be a Z-algebra homomorphism. Let 0R be the
zero in R. Then

(a) ker f = {0R} if and only if f is injective.

(b) im f = A if and only if f is surjective.

Notice that the proof of Proposition R.1.5(b) does not use the fact that f : R ! A is a
homomorphism, only the fact that f : R ! A is a function.

Theorem R.1.6. —

(a) Let f : R ! A be a ring homomorphism and let K = ker f . Define

f̂ : R/ ker f ! A
r +K 7! f(r).

Then f̂ is a well defined injective Z-algebra homomorphism.
(b) Let f : R ! A be a Z-algebra homomorphism and define

f 0 : R ! imf
r 7! f(r).

Then f 0 is a well defined surjective ring homomorphism.
(c) If f : R ! A is a ring homomorphism, then

R/ ker f ' imf

where the isomorphism is a Z-algebra isomorphism.



R.1. RINGS=Z-ALGEBRAS 47

R.1.4. Direct Sums. — Suppose S and T are Z-algebra. The idea is to make S ⇥ T
into a Z-algebra.

Definition R.1.8. —

• The direct sum S�T of two rings S and T is the set S⇥T with operations given
by

(s1, t1) + (s2, t2) = (s1 + s2, t1, t2) and (s1, t1)(s2, t2) = (s1s2, t1t2),

for s1, s2 2 S and t1, t2 2 T .
• More generally, given Z-algebras R1, . . . , Rn, the direct sum R1 � · · ·�Rn is the
set R1 ⇥ · · ·⇥Rn with operations given by

(s1, . . . , si, . . . , sn) + (t1, . . . , ti, . . . , tn) = (s1 + t1, . . . , si + ti, . . . , sn + tn) and

(s1, . . . , si, . . . , sn)(t1, . . . , ti, . . . , tn) = (s1t1, . . . , siti, . . . , sntn),

where si, ti 2 Ri and si + ti and siti are given by the operations for the ring Ri.

The operations in the direct sum is just the operations from the original Z-algebras acting
componentwise.

HW: Show that these are good definitions, i.e., that, as defined above, S � T and R1 �
· · · � Rn are Z-algebras with zeros given by (0S, 0T ) and (0R1 , . . . , 0Rn

) respectively and
identities given by (1S, 1T ) and (1R1 , . . . , 1Rn

) respectively.

R.1.5. Further definitions. — There are many things which help to characterize a
ring. Some definitions are given here for reference.

Definition R.1.9. —

• A commutative Z-algebra is a ring R such that if a, b 2 R then ab = ba.

• The center of a Z-algebra R is the set

Z(R) = {z 2 R | if r 2 R then zr = rz}.

HW: Give an example of a non-commutative Z-algebra.

HW: Prove that Z(R) is a Z-subalgebra of R.

HW: Give an example to show that Z(R) is not necessarily an ideal of R.

HW: What two elements are always in the center of R?

Definition R.1.10. —

• The characteristic, char(A), of a ring A is the smallest positive integer n such
that 1 + 1 + · · ·+ 1 (n times) is 0. If such an integer does not exist, char(A) is 0.

Proposition R.1.7. — Let R be a Z-algebra. Let 0R and 1R be the zero and the identity
in R respectively.
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(a) There is a unique Z-algebra homomorphism ' : Z ! R given by

'(0) = 0R,

'(m) = 1R + · · ·+ 1R| {z }
m times

, and

'(�m) = �'(m),

for m 2 Z>0.
(b) ker' = nZ = {nk | k 2 Z}, where n = char(R) is the characteristic of the Z-algebra

R.

HW: Show that if char(R) = 2 then 1 = �1 in R.

Definition R.1.11. —

• A left inverse of an element b of a Z-algebra R is an element c 2 R such that
cb = 1.

• A right inverse of an element b of a Z-algebra R is an element c 2 R such that
bc = 1.

• An inverse or a two sided inverse of an element b of a Z-algebra R is an element
c 2 R such that cb = bc = 1.

• A unit is an element of a Z-algebra that has an inverse.

• If R is a Z-algebra, R⇥ is the set of units of R.

HW: Show that if b 2 R has both a left inverse and a right inverse then they must be
equal.

HW: Give an example of a ring A and an element of A that has a left inverse but not a
right inverse. PUT IN PASSMAN’S LITTLE EXAMPLE.

HW: What element of a Z-algebra is always a unit?

HW: Prove that if R is a ring then R⇥ is a group (under multiplication).

HW: Give an example of a ring such that A⇥ = A� {0}.
HW: Give an example of a Z-algebra such that R⇥ 6= R� {0}.

Definition R.1.12. —

• Let R be a Z-algebra and S a subset of R. The ideal generated by S is the ideal
hSi of R such that
(a) S ✓ hSi,
(b) If T is an ideal of R and S ✓ T then hSi ✓ T .

• An ideal of a commutative ring is principal if it is generated by one element.

The ideal hSi is the smallest ideal of R containing S. Think of hSi as gotten by adding
to S exactly those elements of R that are needed to make an ideal.

Definition R.1.13. —

• A proper ideal of a Z-algebra A is an ideal that is not (0) or A.

• A maximal ideal of a ring A is a proper ideal of A that is not contained in any
other proper ideal of A.
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HW: Show that a proper ideal does not contain any units.

Proposition R.1.8. — Every proper ideal I of a Z-algebra A is contained in a maximal
ideal of A.

Definition R.1.14. —

• A local ring is a commutative ring with only one maximal ideal.

• A simple Z-algebra is a Z-algebra with no proper ideals.

• A ring A is a division algebra if every nonzero element of A has an inverse in A.

• A field is a commutative Z-algebra F such that every nonzero element of F has an
inverse in F.

HW: Show that a commutative division algebra is a field.

HW: Let R be a Z-algebra and let I be an ideal of R. Show that I is a maximal ideal if
and only if R/I is a division algebra.

HW: Show that Q[x] is a local ring.

HW: Show that Z is not a local ring.

HW: Show that the quaternions H is a division algebra that is not a field.

HW: Let F be a field and let n 2 Z>0. Show that the Z-algebra Mn(F) of n⇥n matrices
with entries in F is a simple Z-algebra.

HW: Show that Z is not a simple Z-algebra.


