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F.2. Vector spaces

Definition F.2.1. — Let F be a field with identity 1 2 F.
• An F-vector space is a set V with functions +: V ⇥ V ! V (addition) and (scalar
multiplication) ⇥ : F ⇥ V ! V

�
we write v + w instead of +(v, w) and cv instead of

⇥(c, v)
�
such that

(a) If v1, v2, v3 2 V then (v1 + v2) + v3 = v1 + (v2 + v3),
(b) If v1, v2 2 V then v1 + v2 = v2 + v1,
(c) There exists a zero, 0 2 V , such that if v 2 V then 0 + v = v,
(d) If v 2 V there exists an additive inverse, �v 2 V , such that v + (�v) = 0.
(e) If c1, c2 2 F and v 2 V then c1(c2v) = (c1c2)v.
(f) If v 2 V then 1 · v = v.
(g) If c 2 F and v1, v2 2 V then c(v1 + v2) = cv1 + cv2.
(h) If c1, c2 2 F and v 2 V then (c1 + c2)v = c1v + c2v.

• A subspace W of an F-vector space V is a subset W ✓ V such that

(a) If w1, w2 2 W then w1 + w2 2 W ,
(b) 0 2 W ,
(c) If w 2 W then �w 2 W ,
(d) If w 2 W and c 2 F then cw 2 W .

• The zero space {0} is the set containing only 0 with operations 0 + 0 = 0 and c · 0 = 0
for c 2 F.

A vector space is just a module over a field. Properties (a), (b), (c), and (d) in the
definition of an F-vector space imply that a vector space is an abelian group with an
action of the field F.

HW: Show that the element 0 2 V is unique.

HW: Show that if v 2 V then the element �v 2 V is unique.

HW: Show that if V is an F-vector space and v 2 V then 0 · v = 0. (The 0 on the
left hand side of this equation is an element of F and the 0 on the right hand side is an
element of V .)

HW: Show that if c 2 F then c 0 = 0. (The 0 on both sides of this equation is the zero
in V .)

HW: Let V be an F-vector space and let c 2 F and v 2 V . Show that c · v = 0 if and
only if either c = 0 or v = 0.

Important examples of vector spaces are:

(a) R
k (is an R-vector space) and C

k (is a C-vector space).
(b) If F is a field then F

k is an F-vector space.

Linear transformations are used to compare vector spaces. A linear transformation must
preserve the structures that distinguish an F-vector space: the addition and the scalar
multiplication.

Definition F.2.2. —

• A linear transformation is a function T : V ! W between F-vector spaces V
and W such that
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(a) If v1, v2 2 V then T (v1 + v2) = T (v1) + T (v2),
(b) If c 2 F and v 2 V then T (cv) = cT (v).

• A vector space isomorphism is a linear transformation T : V ! W such that
the inverse function T�1 : W ! V exists and is a linear transformation.

• Two F-vector spaces V and W are isomorphic, V ' W , if there exists a vector
space isomorphism T : V ! W between them.

Two F-vector spaces are isomorphic if the elements of the vector spaces and the operations
and the actions match up exactly. Think of two vector spaces that are isomorphic as being
“the same”.

HW: Let T : V ! W be a linear transformation. Show that T is a vector space isomor-
phism if and only if T is bijective.

Proposition F.2.1. — Let T : V ! W be a linear transformation. Let 0V and 0W be
the zeros for V and W respectively. Then
(a) T (0V ) = 0W , and
(b) If v 2 V then T (�v) = �T (v).

F.2.1. Cosets. —

Definition F.2.3. —

• A subgroup of an F-vector space V is a subset W ✓ V such that
(a) If w1, w2 2 W then w1 + w2 2 W .
(b) 0 2 W .
(c) If w 2 W then �w 2 W .

Let V be an F-vector space and let W be a subgroup of V . We will use the subgroup W
to divide up the module V .

Definition F.2.4. — Let V be an F-vector space and let W be a subgroup of V .

• A coset of W in V is a set v +W = {v + w | w 2 W} where v 2 V .

• V/W (pronounced “V mod W”) is the set of cosets of W in V .

Proposition F.2.2. — Let V be an F-vector space and let W be a subgroup of V . Then
the cosets of W in V partition V .

Notice the analogy between Proposition F.2.2 and Proposition R.1.2 and Proposition
R.2.2 and Proposition G.1.2.

F.2.2. Quotient Spaces $ Subspaces. — Let V be an F-vector space and let W be
a subspace of V . We can try to make the set V/W of cosets of W in V into an F-vector
space by defining an addition operation and an action of F.

Theorem F.2.3. — Let W be a subgroup of a vector space V over a field F. Then W
is a subspace of V if and only if V/W with operations given by

(v1 +W ) + (v2 +W ) = (v1 + v2) +W and c(v +W ) = cv +W,

is an F-vector space.
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Notice the analogy between Theorem F.2.3, Theorem R.2.3, Theorem R.1.3 and Theorem
G.1.5.

Definition F.2.5. —

• The quotient space V/W is the F-vector space of cosets of a subspace W of an
F-vector space V with operations given by

(v1 +W ) + (v2 +W ) = (v1 + v2) +W and (v +W ) = cv +W.

We have made V/W into a vector space when W is a subspace of V .

HW: Show that if W = V then V/W ' {0}.

F.2.3. Kernel and image of a linear transformation. —

Definition F.2.6. — Let T : V ! W be a linear transformation.

• The kernel, or null space, of T is the set

kerT = {v 2 V | T (v) = 0W},
where 0W is the zero element of W .

• The image of T is the set

imT = {T (v) | v 2 V }.

Proposition F.2.4. — Let T : V ! W be a linear transformation. Then

(a) kerT is a subspace of V .

(b) imT is a subspace of W .

Proposition F.2.5. — Let T : V ! W be a linear transformation. Let 0V be the zero
in V . Then

(a) kerT = {0V } if and only if T is injective.

(b) imT = W if and only if T is surjective.

Notice that the proof of Proposition F.2.5 (b) does not use the fact that T : V ! W is a
linear transformation, only the fact that T : V ! W is a function.

Theorem F.2.6. —

(a) Let T : V ! W be a linear transformation and let N = kerT . Define

T̂ : V/ kerT ! W
v +N 7! f(v).

Then T̂ is a well defined injective linear transformation.
(b) Let T : V ! W be a linear transformation and define

T 0 : V ! imT
v 7! T (v).

Then T 0 is a well defined surjective linear transformation.
(c) If T : V ! W is a linear transformation, then

V/ kerT ' imT,

where the isomorphism is a vector space isomorphism.
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F.2.4. Direct Sums. — Suppose V and W are F-vector spaces. The idea is to make
the set V ⇥W into a vector space.

Definition F.2.7. —

• The direct sum of V �W of two vector spaces V and W over a field F is the set
V ⇥W with operations given by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and c(v, w) = (cv, cw),

for v, v1, v2 2 V and w,w1, w2 2 W and c 2 F. The operations in V � W are
componentwise.

• More generally, given vector spaces V1, V2, . . . , Vn over F the direct sum V1� · · ·�
Vn is the set V1 ⇥ · · ·⇥ Vn with the operations given by

(v1, . . . , vi, . . . , vn) + (w1, . . . , wi, . . . , wn) = (v1 + w1, . . . , vi + wi, . . . , vn + wn), and

c(v1, . . . , vi, . . . , vn) = (cv1, . . . , cvi, . . . , cvn),

where vi, wi 2 Vi, c 2 F, and vi + wi and cvi are given by the operations in Vi.

HW: Show that these are good definitions, i.e., that as defined above, V � W and
V1 � · · · � Vn are vector spaces over F with zeros given by (0V , 0W ) and (0V1 , . . . , 0Vn

)
respectively. (0Vi

denotes the zero element in Vi.)

F.2.5. Further Definitions. —

Definition F.2.8. — Let V be an F- vector space and let S be a subset of V .

• The span of S or the subspace generated by S, is the subspace span
F
(S) of V

such that
(a) S ✓ span

F
(S),

(b) If W is a subspace of V and S ✓ W then span
F
(S) ✓ W .

The subspace span
F
(S) is the smallest subspace of V containing S. Think of span

F
(S) as

gotten by adding to S exactly those elements of V that are needed to make a subspace.

Definition F.2.9. — Let V be an F- vector space and let S be a subset of V .

• The span of S is the subspace of V

span
F
(S) = {c1v1 + . . .+ ckvk | k 2 Z>0, v1, . . . , vk 2 V, c1, . . . , ck 2 F}

• The set S is linearly independent f it satisfies:

if k 2 Z>0 and v1, . . . , vk 2 S and c1, . . . , ck 2 F and c1v1 + · · ·+ ckvk = 0
then c1 = 0, c2 = 0, . . . , ck = 0.

• A basis of V is a subset B ✓ V such that
(a) span

F
(B) = V ,

(b) B is linearly independent.
• The dimension of V is dim(V ) = Card(B), where B is a basis of V .

Proposition F.2.7. — Let V be an F-vector space and let B be a subset of V . The
following are equivalent:

(a) B is a basis of V .
(b) B is a minimal element of {S ✓ V | span

F
(S) = V }.

(c) B is a maximal element of {L ✓ V | L is linearly independent}.
(In (b) and (c) the ordering is by inclusion.)
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Theorem F.2.8. — Let V be an F-vector space. Then

(a) V has a basis, and
(b) Any two bases of V have the same number of elements.


