GTLA Lecture 3, 07.08.2020

$$
\begin{aligned}
\binom{p}{k} & =\frac{p!}{k!(p-k)!}=\frac{p(p-1) \cdots 2 \cdot 1}{k!(p-k)(p-k-1) \cdots 2 \cdot 1} \\
& =\frac{p(p-1) \cdots(p-k+2)(p-k+1)(p-k)(p-k-1) \cdots 2 \cdot 1}{k!} \\
& =\frac{p(p-1) \cdots(p-k+2)(p-k+1)(p-k-1) \cdots 2 \cdot 1}{k!}
\end{aligned}
$$

RSA Make public (m, e)
(Private: $m=p_{1} p_{2}$)

$$
n=\left(p_{1}-1\right)\left(p_{2}-1\right)
$$

Condition: $\operatorname{gcol}(0, n)=1$
(Hor RSAlo)
work
Private! d such that de $=1$ is H/ziz.
enc: $\frac{Z}{m Z} \rightarrow H_{m L E}$

$$
x \longrightarrow x^{e}
$$

$$
y \longrightarrow y^{d}
$$

RSA works if $\left(x^{e}\right)^{d}=x$.
Theorem. Assume on= $p_{1} p_{2}$, with $p_{1}, p_{2} \lll \operatorname{li}_{0}$ pursue, $p_{1} \neq p_{2}$

$$
n=\left(p_{1}-1\right)\left(p_{2}-1\right), \quad \operatorname{gcd}(e, n)=1
$$

Then there exist $d, k \in \mathbb{Z}$ such that

$$
d e+k n=1 . \quad\left(\begin{array}{l}
k \\
k \nmid O c s+x
\end{array}\right.
$$

$$
\text { Then }\left(x^{e}\right)^{d}=x
$$

Proof (Sketch) Lan If,
os $x^{2 d}-x=0$ in (p)
So p_{1} divides $x^{e d}-x$.
Similarly in $\frac{2}{2} / \rho_{2} \#, x^{e d}-x=0$. and so ρ_{2} divides $x^{e d}-x$.
Then $p_{1} p_{2}$ divides $x^{e d}-x$.

$$
\begin{aligned}
& \left.\left\langle x^{c}\right)^{d}=x^{e d}=x^{1-k n}=x\left(x^{+n}\right)^{k^{p_{1}}-1,1} \begin{array}{l}
n \neq 0 \\
n
\end{array}\right) \\
& =x\left(x^{\left(p_{1}-1\right)\left(p_{2}-1\right)}\right)^{-k} \\
& \left.=x\left(1^{p_{2}-1}\right)^{-k}=x_{1}\right)=x \text {. }
\end{aligned}
$$

So $x^{e d}-x=0$ in $\# / p_{1} p_{2} \#=\pi / m z$.
So $x^{e d} \stackrel{d}{=} x$ in $2 / \mathrm{mz}$
So $\left(x^{e}\right)^{\nu}=x$ in $\not{ }^{2} / m \mathcal{Z}$. $/ 1$.
$\left[\begin{array}{c}\text { If } 3 \text { divides } y \\ \text { and } 5 \text { divides } y \text { then } 15 \text { divides } \\ y\end{array}\right]$
Fermat's little theorem $a \in \%$ \% If p is prime then in Hp

$$
n^{p}=n .
$$

\cdots icpuinco nursed $\triangle \Delta x$ Euler's theorem Let p_{1}, p_{2} be prime Let $n=\left(p_{1}-1\right)\left(p_{2}-1\right)$. Let $l=1 \bmod n$. Then

$$
x^{l}=x \text { in } \mathbb{Z} / p_{1} p_{2} \mathbb{Z} .
$$

Fitlds
A firld is a number system (comuntative ving) sucti that every nouzero element is envertible.

22/izz not a field
\#fze is a field
Z/p is a fireld if p is pume.
Morefieds!

$$
\begin{aligned}
& \mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b<\mathbb{Z}, b \notin 0 \text { and }\right\} \\
& \frac{a}{b} \frac{b}{a}=1 \text { if } \frac{a}{b} \neq \frac{0}{1} \text {. } \\
& \mathcal{R}=\{\text { decinal expansions }\} \text {. } \\
& \mathbb{C}=\{a+b i / a \in \mathbb{R}, b \in \mathbb{R}\} \\
& \text { If } z=a+b i \text { then } \\
& y=1 \text { if } y=\frac{a}{a^{7}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
\end{aligned}
$$

Let IF be a fie $1 d$.

$$
\mathbb{F}[x]=\left\{a_{0}+a_{1} x+\cdots+a_{l} x\left(\begin{array}{l}
l \in \mathcal{Z}_{2} \geqslant 0 \\
a_{1}, \cdots, a_{l} \in \mathbb{F}
\end{array}\right\}\right.
$$

is the number system of polynomials with coefficients in IF
Example
(1) $x^{2}-9 \in \mathbb{Q}[x]$

$$
\text { and }(x-3)(x+3)=x^{2}-9
$$

is a factorization on $\mathbb{Q}[x]$. $3 \in \mathbb{S}$ a solution to $x^{2}-9=0$.
$-3 \in \mathbb{R}$ is a solution to $x^{2}-9=0$.
(2) $x^{2}-2 \in \mathbb{Q}[x]$ but does not factor in $Q[x]$.

$$
x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})
$$

$\sqrt{2} \& \mathbb{R}!!!!$ This is a factivization in $\mathbb{R}[x]$. not in $\mathbb{Q}[x])$.
\mathbb{A} is not a algebraically closed.

Let If be a field.
F is algebraically closed if the following holds:
If $x^{2}+a_{l-1} x^{l-1}+\cdots+a_{1} x+a_{0} \in \mathbb{F}[x]$
then there exist

$$
r_{1}, r_{2}, \ldots, r_{l} \in \mathbb{F}
$$

such that

$$
\begin{aligned}
& x^{l}+c_{2}-1 x^{l-1}+\cdots a_{1} x+a_{0} \\
& \quad=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{2}\right) .
\end{aligned}
$$

In English:
Pis algebraically closed if every polynomial in $\mathbb{F}[x]$ factors completely.
Is 刅 algebricically closed? NO. Because
$x^{2}+1 \in \mathbb{R}[x]$ but

$$
x^{2}+1=(x+i)(x-i)
$$

and i\&R and -i\&R.

Theorem © is algebraically
Whyshouldt Dosed．
bering $\pi+e_{c}$ Kc ？？$\sqrt{-1} \& \mathbb{R}$ ．

$$
\begin{aligned}
& \sqrt{9}=3 \text { since } 3^{2}=9 \\
& \sqrt{9}=-3 \text { since }(-3)^{2}=9
\end{aligned}
$$

and $-3 \neq 3$ even though
$\sqrt{9}=\sqrt{9}$,
者左 is a field．
酔 it algebraically closed？

$$
\sqrt{2}=4, \sqrt{2}=5, \sqrt[y]{1}=6
$$

$$
\begin{aligned}
& \sqrt{4}=2 \quad\left(\begin{array}{c}
\text { should we ban } \\
\sqrt{4}=5
\end{array} \quad \begin{array}{c}
? \text { ? }
\end{array}\right) .
\end{aligned}
$$

Does $x^{2}-5=0$ have a solution今 \＃／Fe？
（Is there x स五短生 such tint $x^{2}=5$ ？）
No．
$x^{2}-5$ does not factor in $\mathbb{F}_{7}[x]$ if $\mathbb{F}_{7}=\mathbb{Z} / 7 Z Z$ ．
Common notation： $\pi_{p}=22 / p \not \|_{2}$ if ρ is prime．
So F_{7} is not algebraically closed．

