CHAPTER 2

SETS, RELATIONS, ORDERS AND FIELDS

2.1. Sets and functions

2.1.1. Sets. - A set is a collection of objects which are called elements.

Write

$$
s \in S \text { if } s \text { is an element of the set } S \text {. }
$$

- The empty set \emptyset is the set with no elements.
- A subset T of a set S is a set T such that if $t \in T$ then $t \in S$.

Write

$$
\begin{aligned}
& T \subseteq S \text { if } T \text { is a subset of } S, \text { and } \\
& T=S \text { if the set } T \text { is equal to the set } S .
\end{aligned}
$$

Let S and T be sets.

- The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$,

$$
S \cup T=\{u \mid u \in S \text { or } u \in T\} .
$$

- The intersection of S and T is the set $S \cup T$ of all u such that $u \in S$ and $u \in T$,

$$
S \cap T=\{u \mid u \in S \text { and } u \in T\} .
$$

- The product S and T is the set $S \times T$ of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

$$
S \times T=\{(s, t) \mid s \in S \text { and } t \in T\} .
$$

The sets S and T are disjoint if $S \cap T=\emptyset$.
The set S is a proper subset of T if $S \subseteq T$ and $S \neq T$.

2.1.2. Functions. - Functions are for comparing sets.

Let S and T be sets. A function from S to T is a subset $\Gamma_{f} \subseteq S \times T$ such that if $s \in S$ then there exists a unique $t \in T$ such that $(s, t) \in \Gamma_{f}$.
Write

$$
\Gamma_{f}=\{(s, f(s)) \mid s \in S\}
$$

so that the function Γ_{f} can be expressed as

$$
\begin{array}{llllc}
\text { an "assignment" } \quad f: & S & \rightarrow & T \\
& s & \mapsto & f(s)
\end{array}
$$

which must satisfy
(a) If $s \in S$ then $f(s) \in T$, and
(b) If $s_{1}, s_{2} \in S$ and $s_{1}=s_{2}$ then $f\left(s_{1}\right)=f\left(s_{2}\right)$.

Let S and T be sets.

- Two functions $f: S \rightarrow T$ and $g: S \rightarrow T$ are equal if they satisfy

$$
\text { if } s \in S \text { then } f(s)=g(s) \text {. }
$$

- A function $f: S \rightarrow T$ is injective if f satisfies the condition

$$
\text { if } s_{1}, s_{2} \in S \text { and } f\left(s_{1}\right)=f\left(s_{2}\right) \quad \text { then } \quad s_{1}=s_{2} .
$$

- A function $f: S \rightarrow T$ is surjective if f satisfies the condition

$$
\text { if } t \in T \text { then there exists } s \in S \text { such that } f(s)=t \text {. }
$$

- A function $f: S \rightarrow T$ is bijective if f is both injective and surjective.

Examples. It is useful to visualize a function $f: S \rightarrow T$ as a graph with edges $(s, f(s))$ connecting elements $s \in S$ and $f(s) \in T$. With this in mind the following are examples

(a) a function

(b) not a function

(d) a surjective function

(c) not a function

(e) a bijective function

In these pictures the elements of the left column are the elements of the set S and the elements of the right column are the elements of the set T. In order to be a function the graph must have exactly one edge adjacent to each point in S. The function is injective if there is at most one edge adjacent to each point in T. The function is surjective if there is at least one edge adjacent to each point in T.
2.1.3. Composition of functions. - Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. The composition of f and g is the function

$$
g \circ f \text { given by } \begin{array}{ccccc}
g \circ f: & S & \rightarrow & U \\
& s & \mapsto & g(f(s))
\end{array}
$$

Let S be a set. The identity map on S is the function given by

$$
\begin{aligned}
\mathrm{id}_{S}: & \rightarrow S \\
S & \mapsto
\end{aligned}
$$

Let $f: S \rightarrow T$ be a function. The inverse function to f is a function

$$
f^{-1}: T \rightarrow S \quad \text { such that } \quad f \circ f^{-1}=\operatorname{id}_{T} \quad \text { and } \quad f^{-1} \circ f=\operatorname{id}_{S}
$$

Theorem 2.1.1. - Let $f: S \rightarrow T$ be a function. An inverse function to f exists if and only if f is bijective.

Representing functions as graphs, the identity function id_{S} looks like

(a) the identity function id_{S}

In the pictures below, if the left graph is a pictorial representation of a function $f: S \rightarrow T$ then the inverse function to $f, f^{-1}: T \rightarrow S$, is represented by the graph on the right; the graph for f^{-1} is the mirror-image of the graph for f.

(b) the function f

(c) the function f^{-1}

Graph (d) below, represents a function $g: S \rightarrow T$ which is not bijective. The inverse function to g does not exist in this case: the graph (e) of a possible candidate, is not the graph of a function.

(d) the function g

(e) not a function
2.1.4. Cardinality. - Let S and T be sets. The sets S and T are isomorphic, or have the same cardinality

$$
\text { if there is a bijective function } \quad \varphi: S \rightarrow T \text {. }
$$

Write $\operatorname{Card}(S)=\operatorname{Card}(T) \quad$ if S and T have the same cardinality.
Notation: Let S be a set. Write

$$
\operatorname{Card}(S)= \begin{cases}0, & \text { if } S=\emptyset \\ n, & \text { if } \operatorname{Card}(S)=\operatorname{Card}(\{1,2, \ldots, n\}) \\ \infty, & \text { otherwise }\end{cases}
$$

Note that even in the cases where $\operatorname{Card}(S)=\infty$ and $\operatorname{Card}(T)=\infty$ it may be that $\operatorname{Card}(S) \neq \operatorname{Card}(T)$.
Let S be a set.

- The set S is finite if $\operatorname{Card}(S) \neq \infty$.
- The set S is infinite if $\operatorname{Card}(S)$ is not finite.
- The set S is countable if $\operatorname{Card}(S)=\operatorname{Card}\left(\mathbb{Z}_{>0}\right)$.

Let \mathcal{S} et be the set of sets. Define a relation \sim on \mathcal{S} et by

$$
X \sim Y \quad \text { if there exists a bijection } f: X \rightarrow Y
$$

The relation \sim is an equivalence relation and $\operatorname{Card}(X)$ is the equivalence class of X. The set of ordinals is the set of equivalence classes of \sim,

$$
\mathcal{O} r d=\{\operatorname{Card}(X) \mid X \in \mathcal{S} e t\} .
$$

Theorem 2.1.2. - Define a relation \preceq on \mathcal{S} et by

$$
X \preceq Y \quad \text { if there exists an injection } f: X \rightarrow Y .
$$

(a) The relation \preceq on \mathcal{S} et gives a well defined relation \leqslant on $\mathcal{O} r d$,

$$
\operatorname{Card}(X) \leqslant \operatorname{Card}(Y) \quad \text { if there exists an injection } f: X \rightarrow Y
$$

where $X \in \operatorname{Card}(X)$ and $Y \in \operatorname{Card}(Y)$.
(b) The relation \leqslant is a partial order on $\mathcal{O} r d$.

2.2. Relations, equivalence relations and partitions

Let S be a set.

- A relation \sim on S is a subset R_{\sim} of $S \times S$. Write $s_{1} \sim s_{2}$ if the pair $\left(s_{1}, s_{2}\right)$ is in the subset R_{\sim} so that

$$
R_{\sim}=\left\{\left(s_{1}, s_{2}\right) \in S \times S \mid s_{1} \sim s_{2}\right\} .
$$

- An equivalence relation on S is a relation \sim on S such that
(a) if $s \in S$ then $s \sim s$,
(b) if $s_{1}, s_{2} \in S$ and $s_{1} \sim s_{2}$ then $s_{2} \sim s_{1}$,
(c) if $s_{1}, s_{2}, s_{3} \in S$ and $s_{1} \sim s_{2}$ and $s_{2} \sim s_{3}$ then $s_{1} \sim s_{3}$.

Let \sim be an equivalence relation on a set S and let $s \in S$. The equivalence class of s is the set

$$
[s]=\{t \in S \mid t \sim s\}
$$

A partition of a set S is a collection \mathcal{P} of subsets of S such that
(a) If $s \in S$ then there exists $P \in \mathcal{P}$ such that $s \in P$, and
(b) If $P_{1}, P_{2} \in \mathcal{P}$ and $P_{1} \cap P_{2} \neq \emptyset$ then $P_{1}=P_{2}$.

Theorem 2.2.1. -
(a) If S is a set and let \sim be an equivalence relation on S then
the set of equivalence classes of \sim is a partition of S.
(b) If S is a set and \mathcal{P} is a partition of S then the relation defined by $\quad s \sim t$ if s and t are in the same $P \in \mathcal{P}$
is an equivalence relation on S.

2.3. Partially ordered sets

Let S be a set.

- A partial order on S is a relation \leqslant on S such that
(a) If $x \in A$ then $x \leqslant x$,
(b) If $x, y, z \in S$ and $x \leqslant y$ and $y \leqslant z$ then $x \leqslant z, \quad$ and
(c) If $x, y \in S$ and $x \leqslant y$ and $y \leqslant x$ then $x=y$.
- A total order on S is a partial order \leqslant such that
(d) If $x, y \in S$ then $x \leqslant y$ or $y \leqslant x$.
- A partially ordered set, or poset, is a set S with a partial order \leqslant on S.
- A totally ordered set is a set S with a total order \leqslant on S.

The poset of subsets of $\{\alpha, \beta, \gamma\}$ with inclusion as \leqslant
Let S be a poset. Write

$$
x<y \quad \text { if } \quad x \leqslant y \text { and } x \neq y .
$$

- The Hasse diagram of S is the graph with vertices S and directed edges given by

$$
x \rightarrow y \quad \text { if } x \leqslant y .
$$

- A lower order ideal of S is a subset E of S such that

$$
\text { if } y \in E \text { and } x \in S \text { and } x \leqslant y \quad \text { then } \quad x \in E
$$

- The intervals in S are the sets

$$
\begin{array}{ll}
S_{[a, b]}=\{x \in S \mid a \leqslant x \leqslant b\} & S_{(a, b)}=\{x \in S \mid a<x<b\} \\
S_{[a, b)}=\{x \in S \mid a \leqslant x<b\} & S_{(a, b]}=\{x \in S \mid a<x \leqslant b\} \\
S_{(-\infty, b]}=\{x \in S \mid x \leqslant b\} & S_{[a, \infty)}=\{x \in S \mid a \leqslant x\} \\
S_{(-\infty, b)}=\{x \in S \mid x<b\} & S_{(a, \infty)}=\{x \in S \mid a<x\}
\end{array}
$$

for $a, b \in S$.
2.3.1. Upper and lower bounds, sup and inf. - Let S be a poset and let E be a subset of S.

- An upper bound of E in S is an element $b \in S$ such that if $y \in E$ then $y \leqslant b$.
- A lower bound of E in S is an element $l \in S$ such that if $y \in E$ then $l \leqslant y$.
- A greatest lower bound of E in S is an element $\inf (E) \in S$ such that
(a) $\inf (E)$ is a lower bound of E in S, and
(b) If $l \in S$ is a lower bound of E in S then $l \leqslant \inf (E)$.
- A least upper bound of E in S is an element $\sup (E) \in S$ such that
(a) $\sup (E)$ is a upper bound of E in S, and
(b) If $b \in S$ is a upper bound of E in S then $\sup (E) \leqslant b$.
- The set E is bounded in S if E has both an upper bound and a lower bound in S.

Proposition 2.3.1. - Let S be a poset and let E be a subset of S. If $\sup (E)$ exists then $\sup (E)$ is unique.

2.4. Fields and ordered fields

A field is a set \mathbb{F} with functions

$$
\begin{array}{rlc}
\mathbb{F} \times \mathbb{F} & \longrightarrow & \mathbb{F} \\
(a, b) & \longmapsto a+b
\end{array} \quad \text { and } \quad \begin{aligned}
\mathbb{F} \times \mathbb{F} & \longrightarrow \mathbb{F} \\
(a, b) & \longmapsto
\end{aligned}
$$

such that
(Fa) If $a, b, c \in \mathbb{F}$ then $(a+b)+c=a+(b+c)$,
(Fb) If $a, b \in \mathbb{F}$ then $a+b=b+a$,
(Fc) There exists $0 \in \mathbb{F}$ such that

$$
\text { if } a \in \mathbb{F} \quad \text { then } \quad 0+a=a \text { and } a+0=a,
$$

(Fd) If $a \in \mathbb{F}$ then there exists $-a \in \mathbb{F}$ such that $a+(-a)=0$ and $(-a)+a=0$,
(Fe) If $a, b, c \in \mathbb{F}$ then $(a b) c=a(b c)$,
(Ff) If $a, b, c \in \mathbb{F}$ then

$$
(a+b) c=a c+b c \quad \text { and } \quad c(a+b)=c a+c b
$$

(Fg) There exists $1 \in \mathbb{F}$ such that

$$
\text { if } a \in \mathbb{F} \text { then } 1 \cdot a=a \text { and } a \cdot 1=a,
$$

(Fh) If $a \in \mathbb{F}$ and $a \neq 0$ then there exists $a^{-1} \in \mathbb{F}$ such that $a a^{-1}=1$ and $a^{-1} a=1$,
(Fi) If $a, b \in \mathbb{F}$ then $a b=b a$.
Proposition 2.4.1. - Let \mathbb{F} be a field.
(a) If $a \in \mathbb{F}$ then $a \cdot 0=0$.
(b) If $a \in \mathbb{F}$ then $-(-a)=a$.
(c) If $a \in \mathbb{F}$ and $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$.
(d) If $a \in \mathbb{F}$ then $a(-1)=-a$.
(e) If $a, b \in \mathbb{F}$ then $(-a) b=-a b$.
(f) If $a, b \in \mathbb{F}$ then $(-a)(-b)=a b$.
2.4.1. Ordered fields. - An ordered field is a field \mathbb{F} with a total order \leqslant such that (OFa) If $a, b, c \in \mathbb{F}$ and $a \leqslant b$ then $a+c \leqslant b+c$, (OFb) If $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$ then $a b \geqslant 0$.

Proposition 2.4.2. - Let \mathbb{F} be an ordered field.
(a) If $a \in \mathbb{F}$ and $a>0$ then $-a<0$.
(b) If $a \in \mathbb{F}$ and $a \neq 0$ then $a^{2}>0$.
(c) $1 \geqslant 0$.
(d) If $a \in \mathbb{F}$ and $a>0$ then $a^{-1}>0$.
(e) If $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$ then $a+b \geqslant 0$.
(f) If $a, b \in \mathbb{F}$ and $0<a<b$ then $b^{-1}<a^{-1}$.

Proposition 2.4.3. - Let \mathbb{F} be an ordered field. Let $x, y \in \mathbb{F}$ with $x \geqslant 0$ and $y \geqslant 0$. Then

$$
x \leqslant y \quad \text { if and only if } \quad x^{2} \leqslant y^{2} .
$$

2.5. The binomial theorem and the exponential function

Let $k \in \mathbb{Z}_{\geqslant 0}$. Define k factorial by

$$
0!=1 \quad \text { and } \quad k!=k \cdot(k-1) \cdots 3 \cdot 2 \cdot 1 \text { if } k \in \mathbb{Z}_{>0} .
$$

Let $n, k \in \mathbb{Z}_{\geqslant 0}$ with $k \leqslant n$. Define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Theorem 2.5.1. - Let $n, k \in \mathbb{Z}_{\geqslant 0}$ with $k \leqslant n$.
(a) Let S be a set with cardinality n. Then $\binom{n}{k}$ is the number of subsets of S with cardinality k.
(b) $\binom{n}{k}$ is the coefficient of $x^{n-k} y^{k}$ in $(x+y)^{n}$.
(c) If $k \in\{1, \ldots, n-1\}$ then

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}, \quad \text { and } \quad\binom{n}{0}=1 \quad \text { and } \quad\binom{n}{n}=1
$$

This theorem says that the table of numbers
$\binom{0}{0}$

$\binom{4}{0}$
$\binom{5}{0}$
$\binom{5}{1}$
$\binom{5}{2}$
$\binom{1}{1}$
$\binom{3}{2}$
$\binom{4}{2}$
$\binom{5}{3}$
$\binom{4}{3} \quad\binom{4}{4}$
$\binom{5}{4} \quad\binom{5}{5}$
are the numbers in Pascal's triangle

						1				
				1		1				
			1		2		1			
		1		3		3		1		
	1		4		6		4		1	
1		5		10		10		5		1
\ddots					\vdots					\ddots

and that

$$
\begin{array}{llc}
(x+y)^{0} & = & 1, \\
(x+y)^{1} & = & x+y, \\
(x+y)^{2} & = & x^{2}+2 x y+y^{2}, \\
(x+y)^{3} & = & x^{3}+3 x^{2} y+3 x y^{2}+y^{3}, \\
(x+y)^{4} & = & x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}, \\
(x+y)^{5} & = & x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5},
\end{array}
$$

2.5.1. The exponential function. - The exponential function is the element e^{x} of $\mathbb{Q}[[x]]$ given by

$$
e^{x}=\sum_{k \in \mathbb{Z}>0} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots .
$$

Theorem 2.5.2. - As an element of $\mathbb{Q}[[x, y]$ (which has $x y=y x$),

$$
e^{x+y}=e^{x} e^{y}
$$

HW: Show that $e^{0}=1$.
HW: Show that $e^{-x}=\frac{1}{e^{x}}$.
The logarithm is

$$
\log (1+x)=\sum_{k \in \mathbb{Z}_{>0}}(-1)^{k-1} \frac{x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Theorem 2.5.3. - Let

$$
G=\{p(x) \in \mathbb{F}[[x]] \mid p(0)=1\} \quad \text { and } \quad \mathfrak{g}=\{p(x) \in \mathbb{Q}[[x]] \mid p(0)=0\}
$$

Then
(a) $\log \left(1+\left(e^{x}-1\right)\right)=e^{\log (1+x)}-1=x$.
(b) G is a commutative group under multiplication, \mathfrak{g} is a commutative group under addition and

$$
\begin{array}{rlc}
G & \longrightarrow & \mathfrak{g} \\
p & \longmapsto & e^{p}-1
\end{array} \quad \text { is an isomorphism of groups. }
$$

2.5.2. Notes and references. - The binomial theorem and 'Pascals triangle' are useful computational tools for multiplying out algebraic expressions. The exponential function "is the most important function in mathematics" [$\mathbf{R u}$, Prologue]. The theorems showing that the exponential function is a homomorphism and that the formal inverse to the exponential function is log are found in [Bou, Alg. Ch. IV $\S 4$ no. 10].

2.6. Notes and references

Almost everything in mathematics is built from sets and functions. Groups, rings, fields, vector spaces ... are all sets endowed with additional functions which have special properties. In the society of mathematics, sets and functions are the individuals and the fascination is the way that the individuals, each one different from the others, interact.

Functions are the morphisms in the category \mathcal{S} et of sets and products are products in the category \mathcal{S} et of all sets. The set of sets \mathcal{S} et may or may not make sense to you: there are good reasons - study Russell's paradox, the Zermelo-Frenkel axioms and small categories to learn more.

Fundamental definitions and properties of partially ordered sets are treated thoroughly in [Bou, Ens Ch. III]. The exposition of Stanley [St, Ch. 3] has an inspiring point of view and a wealth of information on the subject of posets. The definition of partially ordered set differs slightly depending on the author: Bourbaki replace axiom (a) in the definition by: If $x, y \in S$ and $x \leqslant y$ then $x \leqslant x$ and $y \leqslant y$. Bourbaki defines a preorder to be a partial order except without the axiom (b).

The set of subsets of a set S forms a partially ordered set under inclusion \subseteq. This is the favorite example of a partial order which is not a total order. The union \cup and intersection \cap make the set of subsets of S into a Boolean algebra. References for Boolean algebras are Birkhoff [Brk, Chapt X] and Stanley [St, §3.4]; in particular, the conditions for the finite Boolean algebra B_{n} are found in Stanley [St, p. 107-108].

The orders on the number systems $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are indispensible for ordinary daily measurements. Perhaps surprisingly, there is no partial order on \mathbb{C} which makes \mathbb{C} an ordered field.
The definitions of left filtered and right filtered are used in the theory of inverse and direct limits. The definitions and examples of upper and lower bounds, suprema and infima, maxima and minima, and largest and smallest element, are a natural way to introduce students to analyses and proofs of existence and uniqueness. Directed sets are the generalization of sequences used to define nets which, in turn, provide a general method for formaliing the notion of a limit (see notes of Arun Ram on filters and nets).

2.7. Proofs

2.7.1. An inverse function to f exists if and only if f is bijective.-

Theorem 2.7.1. - Let $f: S \rightarrow T$ be a function. The inverse function to f exists if and only if f is bijective.

Proof. -
\Rightarrow : Assume $f: S \rightarrow T$ has an inverse function $f^{-1}: T \rightarrow S$.
To show: (a) f is injective.
(b) f is surjective.
(a) Assume $s_{1}, s_{2} \in S$ and $f\left(s_{1}\right)=f\left(s_{2}\right)$.

To show: $s_{1}=s_{2}$.

$$
\left.\left.s_{1}=f^{-1} f\left(s_{1}\right)\right)=f^{-1} f\left(s_{2}\right)\right)=s_{2} .
$$

So f is injective.
(b) Let $t \in T$.

To show: There exists $s \in S$ such that $f(s)=t$.
Let $s=f^{-1}(t)$.
Then

$$
f(s)=f\left(f^{-1}(t)\right)=t .
$$

So f is surjective.

So f is bijective.
\Leftarrow : Assume $f: S \rightarrow T$ is bijective.
To show: f has an inverse function.
We need to define a function $\varphi: T \rightarrow S$.
Let $t \in T$.
Since f is surjective there eists $s \in S$ such that $f(s)=t$.
Define $\varphi(t)=s$.
To show: (a) φ is well defined.
(b) φ is an inverse function to f.
(a) To show: (aa) If $t \in T$ then $\varphi(t) \in S$.
(ab) If $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$ then $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$.
(aa) This follows from the definition of φ.
(ab) Assume $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$.
Let $s_{1}, s_{2} \in S$ such that $f\left(s_{1}\right)=t_{1}$ and $f\left(s_{2}\right)=t_{2}$.
Since $t_{1}=t_{2}$ then $f\left(s_{1}\right)=f\left(s_{2}\right)$.
Since f is injective this implies that $s_{1}=s_{2}$.
So $\varphi\left(t_{1}\right)=s_{1}=s_{2}=\varphi\left(t_{2}\right)$.
So φ is well defined.
(b) To show: (ba) If $s \in S$ then $\varphi(f(s))=s$.
(bb) If $t \in T$ then $f(\varphi(t))=t$.
(ba) This follows from the definition of φ.
(bb) Assume $t \in T$.
Let $s \in S$ be such that $f(s)=t$.
Then

$$
f(\varphi(t))=f(s)=t
$$

So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T, respectively.
So φ is an inverse function to f.

2.7.2. An equivalence relation on S and a partition of S are the same data.-

Theorem 2.7.2. -
(a) If S is a set and let \sim be an equivalence relation on S then
the set of equivalence classes of $\sim \quad$ is a partition of S.
(b) If S is a set and \mathcal{P} is a partition of S then
the relation defined by $\quad s \sim t$ if s and t are in the same $P \in \mathcal{P}$
is an equivalence relation on S.
Proof. -
(a) To show: (aa) If $s \in S$ then s is in some equivalence class.
(ab) If $[s] \cap[t] \neq \emptyset$ then $[s]=[t]$.
(aa) Let $s \in S$.
Since $s \sim s$ then $s \in[s]$.
(ab) Assume $[s] \cap[t] \neq \emptyset$.
To show: $[s]=[t]$.
Since $[s] \cap[t] \neq \emptyset$ then there is an $r \in[s] \cap[t]$.

So $s \sim r$ and $r \sim t$.
By transitivity, $s \sim t$.
To show: (aba) $[s] \subseteq[t]$.
(abb) $[t] \subseteq[s]$.
(aba) Assume $u \in[s]$.
Then $u \sim s$.
We know $s \sim t$.
So, by transitivity, $u \sim t$.
Therefore $u \in[t]$.
So $[s] \subseteq[t]$.
(aba) Assume $v \in[t]$.
Then $v \sim t$.
We know $t \sim s$.
So, by transitivity, $v \sim s$.
Therefore $v \in[s]$.
So $[t] \subseteq[s]$.
So $[s]=[t]$.
So the equivalence classes partition S.
(b) To show: \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric and transitive.
To show: (ba) If $s \in S$ then $s \sim s$.
(bb) If $s \sim t$ then $t \sim s$.
(bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
(ba) Since s and s are in the same S_{α} then $s \sim s$.
(bb) Assume $s \sim t$.
Then s and t are in the same S_{α}.
So $t \sim s$.
(bb) Assume $s \sim t$ and $t \sim u$.
Then s and t are in the same S_{α} and t and u are in the same S_{α}. So $s \sim u$.
So \sim is an equivalence relation.

2.7.3. Identities in a field. -

Proposition 2.7.3. - Let \mathbb{F} be a field.
(a) If $a \in \mathbb{F}$ then $a \cdot 0=0$.
(b) If $a \in \mathbb{F}$ then $-(-a)=a$.
(c) If $a \in \mathbb{F}$ and $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$.
(d) If $a \in \mathbb{F}$ then $a(-1)=-a$.
(e) If $a, b \in \mathbb{F}$ then $(-a) b=-a b$.
(f) If $a, b \in \mathbb{F}$ then $(-a)(-b)=a b$.

Proof. -
(a) Assume $a \in \mathbb{F}$.

$$
\begin{aligned}
a \cdot 0 & =a \cdot(0+0), \quad \text { by }(\mathrm{Fc}), \\
& =a \cdot 0+a \cdot 0, \quad \text { by }(\mathrm{Ff}) .
\end{aligned}
$$

Add $-a \cdot 0$ to each side and use (Fd) to get $0=a \cdot 0$.
(b) Assume $a \in \mathbb{F}$.

By (Fd),

$$
-(-a)+(-a)=0=a+(-a) .
$$

Add $-a$ to each side and use (Fd) to get $-(-a)=a$.
(c) Assume $a \in \mathbb{F}$ and $a \neq 0$.

By (Fh),

$$
\left(a^{-1}\right)^{-1} \cdot a^{-1}=1=a \cdot a^{-1} .
$$

Multiply each side by a and use (Fh) and (Fg) to get $\left(a^{-1}\right)^{-1}=a$.
(d) Assume $a \in \mathbb{F}$.

By (Ff),

$$
a(-1)+a \cdot 1=a(-1+1)=a \cdot 0=0,
$$

where the last equality follows from part (a).
So, by $(\mathrm{Fg}), a(-1)+a=0$.
Add $-a$ to each side and use (Fd) and (Fc) to get $a(-1)=-a$.
(e) Assume $a, b \in \mathbb{F}$.

$$
\begin{aligned}
(-a) b+a b & =(-a+a) b, \quad \text { by }(\mathrm{Ff}), \\
& =0 \cdot b, \quad \text { by }(\mathrm{Fd}), \\
& =0, \quad \text { by } \operatorname{part}(\mathrm{a}) .
\end{aligned}
$$

Add $-a b$ to each side and use (Fd) and (Fc) to get $(-a) b=-a b$.
(f) Assume $a, b \in \mathbb{F}$.

$$
\begin{aligned}
(-a)(-b) & =-(a(-b)), \quad \text { by }(\mathrm{e}), \\
& =-(-a b), \quad \text { by }(\mathrm{e}), \\
& =a b, \quad \text { by part }(\mathrm{b}) .
\end{aligned}
$$

2.7.4. Identities in an ordered field. -

Proposition 2.7.4. - Let \mathbb{F} be an ordered field.
(a) If $a \in \mathbb{F}$ and $a>0$ then $-a<0$.
(b) If $a \in \mathbb{F}$ and $a \neq 0$ then $a^{2}>0$.
(c) $1 \geqslant 0$.
(d) If $a \in \mathbb{F}$ and $a>0$ then $a^{-1}>0$.
(e) If $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$ then $a+b \geqslant 0$.
(f) If $a, b \in \mathbb{F}$ and $0<a<b$ then $b^{-1}<a^{-1}$.

Proof. -
(a) Assume $a \in \mathbb{F}$ and $a>0$.

Then $a+(-a)>0+(-a)$, by (OFb).

So $0>-a, \quad$ by (Fd) and (Fc).
(b) Assume $a \in \mathbb{F}$ and $a \neq 0$.

Case 1: $a>0$.
Then $a \cdot a>a \cdot 0, \quad$ by (OFb).
So $a^{2}>0, \quad$ by part (a).
Case 2: $a<0$.
Then $-a>0$, by part (a).
Then $(-a)^{2}>0, \quad$ by Case 1 .
So $a^{2}>0, \quad$ by Proposition 13.4.3 (f).
(c) To show: $1 \geqslant 0$.
$1=1^{2} \geqslant 0, \quad$ by part (b).
(d) Assume $a \in \mathbb{F}$ and $a>0$.

By part (b), $a^{-2}=\left(a^{-1}\right)^{2}>0$.
So $a\left(a^{-1}\right)^{2}>a \cdot 0, \quad$ by (OFb).
So $a^{-1}>0, \quad$ by (Fh) and Proposition 13.4.3 (a).
(e) Assume $a, b \in \mathbb{F}$ and $a \geqslant 0$ and $b \geqslant 0$.

$$
\begin{aligned}
a+b & \geqslant 0+b, \quad \text { by }(\mathrm{OFa}), \\
& \geqslant 0+0, \quad \text { by }(\mathrm{OFa}), \\
& =0, \quad \text { by }(\mathrm{Fc}) .
\end{aligned}
$$

(f) Assume $a, b \in \mathbb{F}$ and $0<a<b$.

So $a>0$ and $b>0$.
Then, by part (d), $a^{-1}>0$ and $b^{-1}>0$.
Thus, by (OFb), $a^{-1} b^{-1}>0$.
Since $a<b$, then $b-a>0, \quad$ by (OFa).
So, by (OFb), $\quad a^{-1} b^{-1}(b-a)>0$.
So, by (Fh), $a^{-1}-b^{-1}>0$.
So, by (OFa), $a^{-1}>y^{-1}$.

2.7.5. The binomial theorem. -

Theorem 2.7.5. - Let $n, k \in \mathbb{Z}_{\geqslant 0}$ with $k \in\{0,1, \ldots, n\}$. Assume $x y=y x$.
(a) If $k \in\{1, \ldots, n-1\}$ then

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}, \quad \text { and } \quad\binom{n}{0}=1 \quad \text { and } \quad\binom{n}{n}=1
$$

(b) $\binom{n}{k}$ is the coefficient of $x^{n-k} y^{k}$ in $(x+y)^{n}$.
(c) Let S be a set with cardinality n.

Then $\binom{n}{k}$ is the number of subsets of S with cardinality k.
(d) $e^{(x+y)}=e^{x} e^{y}$.

Proof. - (a) $\binom{n}{0}=\frac{n!}{0!(n-0)!}=\frac{n!}{1 \cdot n!}=1$ and $\binom{n}{n}=\frac{n!}{n!(n-n)!}=\frac{n!}{n!0!}=\frac{n!}{n!\cdot 1}=1$.
If $k \in\{1, \ldots, n-1\}$ then

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k-1} & =\frac{(n-1)!}{(k-1)!(n-1-(k-1))!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{n-k}+\frac{1}{k}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!} \frac{n}{k(n-k)}=\frac{n!}{k!(n-k)!}=\binom{n}{k} .
\end{aligned}
$$

(b) The base cases are $(x+y)^{0}=1=\binom{0}{0} x^{0} y^{0}$ and $(x+y)^{1}=x+y=\binom{1}{0} x^{1} y^{0}+\binom{1}{1} x^{1} y^{0}$. Then, by induction,

$$
\begin{aligned}
&(x+y)^{n}=(x+y)^{n-1}(x+y) \\
&\left.=\binom{n-1}{0} x^{n-1} y^{0}+\binom{n-1}{1} x^{n-2} y^{1}+\cdots+\binom{n-1}{n-2} x^{1} y^{n-2}+\binom{n-1}{n-1} x^{0} y^{n-1}\right)(x+y) \\
&=\binom{n-1}{0} x^{n} y^{0}+\binom{n-1}{1} x^{n-1} y^{1}+\cdots+\binom{n-1}{n-2} x^{2} y^{n-2}+\binom{n-1}{n-1} x^{1} y^{n-1} \\
&+\binom{n-1}{0} x^{n-1} y^{1} \\
&+\cdots+\binom{n-1}{n-2} x^{1} y^{n-1}+\binom{n-1}{n-1} x^{0} y^{n} \\
&=\binom{n}{0} x^{n} y^{0} \quad+\binom{n}{1} x^{n-1} y^{1}+\cdots+\binom{n}{n-1} x^{1} y^{n-1}+\binom{n}{n} x^{0} y^{n},
\end{aligned}
$$

where the last equality follows from part (a).
(c) Since

$$
\begin{aligned}
(x+y)^{n} & =\underbrace{(x+y) \cdots(x+y)}_{n \text { factors }}=\sum_{k=0}^{n} \sum_{\substack{J \subseteq\{1, \ldots, n\} \\
\operatorname{Card}(J)=k}}\left(\prod_{\substack{i \in\{1, \ldots, n\} \\
i \notin J}} x\right)\left(\prod_{\substack{j \in\{1, \ldots, n\} \\
j \in J}} y\right) \\
& =\sum_{k=0}^{n} \operatorname{Card}(\{J \subseteq\{1, \ldots, n\} \mid \operatorname{Card}(J)=k\}) x^{n-k} y^{k},
\end{aligned}
$$

the coefficient of $x^{n-k} y^{k}$ is the number of ways of choosing k factors (each of which comtributes a y to $x^{n-k} y^{k}$) from the n factors in $(x+y) \cdots(x+y)=(x+y)^{n}$.
(d)

$$
\begin{aligned}
& e^{(x+y)}=1+(x+y)+\frac{1}{2!}(x+y)^{2}+\frac{1}{3!}(x+y)^{3}+\cdots \\
& 1 \\
& +(x+y) \\
& \begin{array}{c}
+(x+y) \\
+\frac{1}{2!}\left(x^{2}+2 x y+y^{2}\right)
\end{array} \\
& =\quad \begin{array}{c}
+\frac{1}{3!}\left(x^{3!}+3 x^{2} y+3 x y^{2}+y^{3}\right) \\
+\frac{1}{4!}\left(x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}\right)
\end{array} \\
& +\frac{1}{5!}\left(x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}\right) \\
& 1 \\
& +x+y \\
& +\frac{1}{2!} x^{2}+x y+\frac{1}{2!} y^{2} \\
& =\quad \quad \frac{1}{4!}+\frac{1}{3!} x^{3}+\frac{1}{2!} x^{2} y+x \frac{1}{2!} y^{2}+\frac{1}{3!} y^{3} \\
& \begin{array}{c}
+\frac{1}{4!} x^{4}+\frac{1}{3!} x^{3} y+\frac{1}{2!} x^{2} \frac{1}{2!} y^{2}+x \frac{1}{3} y^{3}+\frac{1}{4} y^{4} \\
+\frac{1}{5!} x^{5}+\frac{1}{4!} x^{4} y+\frac{1}{3!} x^{3} \frac{1}{2!} y^{2}+\frac{1}{2!} x^{2} \frac{1}{3!} y^{3}+x \frac{1}{4!} y^{4}+\frac{1}{5!} y^{5}
\end{array} \\
& =e^{x}+e^{x} y+e^{x} \frac{1}{2!} y^{2}+e^{x} \frac{1}{3!} y^{3}+\cdots \quad=e^{x} e^{y},
\end{aligned}
$$

where the next to last equality follows by adding up the diagonals.

2.8. Exercises

