CHAPTER 1

NUMBER SYSTEMS

An ordered commutative ring is a set A with a relation \leqslant on A and functions

$$
\begin{array}{ccc}
A \times A & \longrightarrow & A \\
(a, b) & \longmapsto a+b
\end{array} \quad \text { and } \quad \begin{array}{ccc}
A \times A & \longrightarrow & A \\
(a, b) & \longmapsto & a b
\end{array}
$$

such that
(Fa) If $a, b, c \in A$ then $(a+b)+c=a+(b+c)$,
(Fb) If $a, b \in A$ then $a+b=b+a$,
(Fc) There exists $0 \in A$ such that

$$
\text { if } a \in A \quad \text { then } \quad 0+a=a \text { and } a+0=a,
$$

(Fd) If $a \in A$ then there exists $-a \in A$ such that $a+(-a)=0$ and $(-a)+a=0$,
(Fe) If $a, b, c \in A$ then $(a b) c=a(b c)$,
(Ff) If $a, b, c \in A$ then

$$
(a+b) c=a c+b c \quad \text { and } \quad c(a+b)=c a+c b
$$

(Fg) There exists $1 \in A$ such that

$$
\text { if } a \in A \quad \text { then } 1 \cdot a=a \text { and } a \cdot 1=a \text {. }
$$

(Fi) If $a, b \in A$ then $a b=b a$.
(Pa) If $x \in A$ then $x \leqslant x$,
(Pb) If $x, y, z \in A$ and $x \leqslant y$ and $y \leqslant z$ then $x \leqslant z, \quad$ and
(Pc) If $x, y \in A$ and $x \leqslant y$ and $y \leqslant x$ then $x=y$.
(Pd) If $x, y \in A$ then $x \leqslant y$ or $y \leqslant x$.
(OFa) If $a, b, c \in A$ and $a \leqslant b$ then $a+c \leqslant b+c$,
(OFb) If $a, b \in A$ and $a \geqslant 0$ and $b \geqslant 0$ then $a b \geqslant 0$.
An ordered commutative ring A satisfies the cancellation property if it satisfies: (CP) if $a, b, c \in A$ and $c \neq 0$ and $a c=b c \quad$ then $a=b$.

An ordered field is an ordered commutative ring \mathbb{F} such that
(Fh) If $a \in \mathbb{F}$ and $a \neq 0$ then there exists $a^{-1} \in \mathbb{F}$ such that $a a^{-1}=1$ and $a^{-1} a=1$,

1.1. The integers \mathbb{Z}

The positive integers is the set

$$
\mathbb{Z}_{>0}=\{1,1+1,1+1+1,1+1+1+1, \ldots\}
$$

with operation given by concatenation so that, for example,

$$
(1+1+1)+(1+1+1+1)=1+1+1+1+1+1+1 .
$$

The positive integers are often written as

$$
\mathbb{Z}_{>0}=\{1,2,3, \ldots\} .
$$

If $x, y \in \mathbb{Z}_{>0}$ write

$$
x<y \quad \text { if there exists } n \in \mathbb{Z}_{>0} \text { such that } x+n=y .
$$

If $x, y \in \mathbb{Z}_{>0}$ then $x<y$ or $x>y$ or $x=y$.
The nonnegative integers is the set

$$
\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}
$$

with operation given by the addition in $\mathbb{Z}_{>0}$ and
(Z0) if $x \in \mathbb{Z}_{\geqslant 0}$ then $0+x=x$ and $x+0=x$.
The integers is the set

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

with operation given by the addition in $\mathbb{Z}_{\geqslant 0}$ and
(Za) If $x, y \in \mathbb{Z}_{>0}$ and $x<y$ then $(-x)+y=n$ and $y+(-x)=n$, where $n \in \mathbb{Z}_{>0}$ is such that $x+n=y$.
(Zb) If $x, y \in \mathbb{Z}_{>0}$ and $x>y$ then $(-x)+y=m$ and $y+(-x)=m$, where $m \in \mathbb{Z}_{>0}$ is such that $y+m=x$.
(Zc) if $x \in \mathbb{Z}_{>0}$ then $(-x)+x=0$, and $x+(-x)=0$,
(Zd) If $x, y \in \mathbb{Z}_{>0}$ then $(-x)+(-y)=-(x+y)$.
(Ze) If $x \in \mathbb{Z}_{>0}$ then $0+(-x)=(-x)+0=-x$.
Proposition 1.1.1. - Let $k \in \mathbb{Z}$. Then there exists a unique function $m_{k}: \mathbb{Z} \rightarrow \mathbb{Z}$ such that
(a) If $x, y \in \mathbb{Z}$ then $m_{k}(x+y)=m_{k}(x)+m_{k}(y)$, and
(b) $m_{k}(1)=k$.

HW: Show that if $k \in \mathbb{Z}$ and $z \neq 0$ then m_{k} is injective.
The multiplication on \mathbb{Z} is

$$
\begin{array}{ccc}
\mathbb{Z} \times \mathbb{Z} & \longrightarrow & \mathbb{Z} \\
(k, l) & \mapsto & k l=m_{k}(l) .
\end{array}
$$

Define a relation \leqslant on \mathbb{Z} by

$$
x \leqslant y \quad \text { if there exists } n \in \mathbb{Z}_{\geqslant 0} \text { such that } x+n=y .
$$

Theorem 1.1.2. - The set \mathbb{Z} with the operations of addition and multiplication and the total order \leqslant is an ordered commutative ring which satisfies the cancellation property.

