CHAPTER 1

NUMBER SYSTEMS

An ordered commutative ring is a set A with a relation \leq on A and functions

such that

(Fa) If $a, b, c \in A$ then (a + b) + c = a + (b + c),

(Fb) If $a, b \in A$ then a + b = b + a,

(Fc) There exists $0 \in A$ such that

if
$$a \in A$$
 then $0 + a = a$ and $a + 0 = a$,

(Fd) If $a \in A$ then there exists $-a \in A$ such that a + (-a) = 0 and (-a) + a = 0,

(Fe) If $a, b, c \in A$ then (ab)c = a(bc),

(Ff) If $a, b, c \in A$ then

(a+b)c = ac + bc and c(a+b) = ca + cb,

(Fg) There exists $1 \in A$ such that

if $a \in A$ then $1 \cdot a = a$ and $a \cdot 1 = a$.

(Fi) If $a, b \in A$ then ab = ba.

(Pa) If $x \in A$ then $x \leq x$,

- (Pb) If $x, y, z \in A$ and $x \leq y$ and $y \leq z$ then $x \leq z$, and
- (Pc) If $x, y \in A$ and $x \leq y$ and $y \leq x$ then x = y.
- (Pd) If $x, y \in A$ then $x \leq y$ or $y \leq x$.

(OFa) If $a, b, c \in A$ and $a \leq b$ then $a + c \leq b + c$, (OFb) If $a, b \in A$ and $a \geq 0$ and $b \geq 0$ then $ab \geq 0$.

An ordered commutative ring A satisfies the **cancellation property** if it satisfies:

(CP) if $a, b, c \in A$ and $c \neq 0$ and ac = bc then a = b.

An ordered field is an ordered commutative ring \mathbb{F} such that

(Fh) If $a \in \mathbb{F}$ and $a \neq 0$ then there exists $a^{-1} \in \mathbb{F}$ such that $aa^{-1} = 1$ and $a^{-1}a = 1$,

1.1. The integers \mathbb{Z}

The **positive integers** is the set

 $\mathbb{Z}_{>0} = \{1, 1+1, 1+1+1, 1+1+1+1, \ldots\}$

with operation given by concatenation so that, for example,

$$(1+1+1) + (1+1+1+1) = 1+1+1+1+1+1+1$$

The positive integers are often written as

$$\mathbb{Z}_{>0} = \{1, 2, 3, \ldots\}$$

If $x, y \in \mathbb{Z}_{>0}$ write

x < y if there exists $n \in \mathbb{Z}_{>0}$ such that x + n = y.

If $x, y \in \mathbb{Z}_{>0}$ then x < y or x > y or x = y. The **nonnegative integers** is the set

$$\mathbb{Z}_{\geq 0} = \{0, 1, 2, 3, \ldots\}$$

with operation given by the addition in $\mathbb{Z}_{>0}$ and

(Z0) if $x \in \mathbb{Z}_{\geq 0}$ then 0 + x = x and x + 0 = x.

The integers is the set

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

with operation given by the addition in $\mathbb{Z}_{\geq 0}$ and

- (Za) If $x, y \in \mathbb{Z}_{>0}$ and x < y then (-x) + y = n and y + (-x) = n, where $n \in \mathbb{Z}_{>0}$ is such that x + n = y.
- (Zb) If $x, y \in \mathbb{Z}_{>0}$ and x > y then (-x) + y = m and y + (-x) = m, where $m \in \mathbb{Z}_{>0}$ is such that y + m = x.
- (Zc) if $x \in \mathbb{Z}_{>0}$ then (-x) + x = 0, and x + (-x) = 0,
- (Zd) If $x, y \in \mathbb{Z}_{>0}$ then (-x) + (-y) = -(x+y).
- (Ze) If $x \in \mathbb{Z}_{>0}$ then 0 + (-x) = (-x) + 0 = -x.

Proposition 1.1.1. — Let $k \in \mathbb{Z}$. Then there exists a unique function $m_k \colon \mathbb{Z} \to \mathbb{Z}$ such that

- (a) If $x, y \in \mathbb{Z}$ then $m_k(x+y) = m_k(x) + m_k(y)$, and
- (b) $m_k(1) = k$.

HW: Show that if $k \in \mathbb{Z}$ and $z \neq 0$ then m_k is injective.

The **multiplication** on \mathbb{Z} is

$$\begin{array}{cccc} \mathbb{Z} \times \mathbb{Z} & \longrightarrow & \mathbb{Z} \\ (k,l) & \mapsto & kl = m_k(l). \end{array}$$

Define a relation \leq on \mathbb{Z} by

 $x \leqslant y$ if there exists $n \in \mathbb{Z}_{\geq 0}$ such that x + n = y.

Theorem 1.1.2. — The set \mathbb{Z} with the operations of addition and multiplication and the total order \leq is an ordered commutative ring which satisfies the cancellation property.