CHAPTER 1

GTLA

1.1. Matrices and operations

Let \mathbb{F} be a field. Let $m, n \in \mathbb{Z}_{>0}$.

• An $m \times n$ matrix with entries in \mathbb{F} is a table of elements of \mathbb{F} with m rows and n columns. More precisely, an $m \times n$ matrix with entries in \mathbb{F} is a function

 $A: \{1, \dots, m\} \times \{1, \dots, n\} \longrightarrow \mathbb{F}.$

- A column vector of length n is an $n \times 1$ matrix.
- A row vector of length n is an $1 \times n$ matrix.
- The (i, j) entry of a matrix A is the element A(i, j) in row i and column j of A.

$$A = \begin{pmatrix} A(1,1) & A(1,2) & \cdots & A(1,m) \\ A(2,1) & A(2,2) & \cdots & A(2,m) \\ \vdots & & & \vdots \\ A(n,1) & A(n,2) & \cdots & A(n,m) \end{pmatrix}$$

Let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F} .

• The sum of $m \times n$ matrices A and B is the $m \times n$ matrix A + B given by

(A+B)(i,j) = A(i,j) + B(i,j), for $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, n\}.$

• The scalar multiplication of an element $c \in \mathbb{F}$ with an $m \times n$ matrix A is the $m \times n$ matrix $c \cdot A$ given by

$$(c \cdot A)(i, j) = c \cdot A(i, j),$$
 for $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, n\}$

• The *product* of an $m \times n$ matrix A and an $n \times p$ matrix B is the $m \times p$ matrix AB given by

$$(AB)(i,k) = \sum_{j=1}^{n} A(i,j)B(j,k)$$

= $A(i,1)B(1,k) + A(i,2)B(2,k) + \dots + A(i,n)B(n,k),$

for $i \in \{1, ..., m\}$ and $k \in \{1, ..., p\}$.

The zero matrix is the $m \times n$ matrix $0 \in M_{m \times n}(\mathbb{F})$ given by

$$0(i, j) = 0,$$
 for $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, n\}$.

The negative of a matrix $A \in M_{m \times n}(\mathbb{F})$ is the matrix $-A \in M_{m \times n}(\mathbb{F})$ given by

$$(-A)(i,j) = -A(i,j),$$
 for $i \in \{1,\ldots,m\}$ and $j \in \{1,\ldots,n\}.$

The following proposition says that $M_{m \times n}(\mathbb{F})$ is an \mathbb{F} -vector space.

Proposition 1.1.1. — Let $m, n \in \mathbb{Z}_{>0}$ and let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F} .

(a) If $A, B, C \in M_{m \times n}(\mathbb{F})$ then A + (B + C) = (A + B) + C.

- (b) If $A, B \in M_{m \times n}(\mathbb{F})$ then A + B = B + A.
- (c) If $A \in M_{m \times n}(\mathbb{F})$ then 0 + A = A and A + 0 = A.
- (d) If $A \in M_{m \times n}(\mathbb{F})$ then (-A) + A = 0 and A + (-A) = 0.
- (e) If $A \in M_{m \times n}(\mathbb{F})$ and $c_1, c_2 \in \mathbb{F}$ then $c_1 \cdot (c_2 \cdot A) = (c_1 c_2) \cdot A$.
- (f) If $A \in M_{m \times n}(\mathbb{F})$ and $1 \in \mathbb{F}$ is the identity in \mathbb{F} then $1 \cdot A = A$.

The Kronecker delta is given by

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise} \end{cases}$$

The *identity matrix* is the $n \times n$ matrix $1 \in M_{n \times n}(\mathbb{F})$ given by

$$1(i, j) = \delta_{ij},$$
 for $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$

The following proposition says that $M_n(\mathbb{F})$ is a ring (usually noncommutative).

Proposition 1.1.2. — Let $n \in \mathbb{Z}_{>0}$ and let $M_n(\mathbb{F})$ be the set of $n \times n$ matrices in \mathbb{F} . (a) If $A, B, C \in M_n(\mathbb{F})$ then A + (B + C) = (A + B) + C.

- (b) If $A, B \in M_n(\mathbb{F})$ then A + B = B + A.
- (c) If $A \in M_n(\mathbb{F})$ then 0 + A = A and A + 0 = A.
- (d) If $A \in M_n(\mathbb{F})$ then (-A) + A = 0 and A + (-A) = 0.
- (e) If $A, B, C \in M_n(\mathbb{F})$ then A(BC) = (AB)C.
- (f) If $A, B, C \in M_n(\mathbb{F})$ then (A+B)C = AC + BC and C(A+B) = CA + CB.
- (g) If $A \in M_n(\mathbb{F})$ then 1A = A and A1 = A.

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^t given by

$$A^{t}(i, j) = A(j, i),$$
 for $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$

The following proposition says that transpose is an antiautomorphism of the ring $M_n(\mathbb{F})$.

Proposition 1.1.3. — Let $m, n \in \mathbb{Z}_{>0}$, let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F} , and let $M_n(\mathbb{F})$ be the set of $n \times n$ matrices in \mathbb{F} .

- (a) If $A, B \in M_{m \times n}(\mathbb{F})$ then $(A + B)^t = A^t + B^t$,
- (b) If $A \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$ then $(c \cdot A)^t = c \cdot A^t$,
- (c) If $A, B \in M_n(\mathbb{F})$ then $(AB)^t = B^t A^t$.
- (d) If $A \in M_n(\mathbb{F})$ then $(A^t)^t = A$.

1.2. Vector spaces and linear transformations

Let \mathbb{F} be a field. A \mathbb{F} -vector space is a set V with functions

$$\begin{array}{ccccc} V \times V & \to & V \\ (v_1, v_2) & \mapsto & v_1 + v_2 \end{array} \quad \text{and} \quad \begin{array}{cccccc} \mathbb{K} \times V & \to & V \\ (c, v) & \mapsto & cv \end{array}$$

(addition and scalar multiplication) such that

- (a) If $v_1, v_2, v_3 \in V$ then $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$,
- (b) There exists $0 \in V$ such that if $v \in V$ then 0 + v = v and v + 0 = v,
- (c) If $v \in V$ then there exists $-v \in V$ such that v + (-v) = 0 and (-v) + v = 0,
- (d) If $v_1, v_2 \in V$ then $v_1 + v_2 = v_2 + v_1$,
- (e) If $c \in \mathbb{F}$ and $v_1, v_2 \in V$ then $c(v_1 + v_2) = cv_1 + cv_2$,
- (f) If $c_1, c_2 \in \mathbb{F}$ and $v \in V$ then $(c_1 + c_2)v = c_1v + c_2v$,
- (g) If $c_1, c_2 \in \mathbb{F}$ and $v \in V$ then $c_1(c_2v) = (c_1c_2)v$,
- (h) If $v \in V$ then 1v = v.

Linear transformations are for comparing vector spaces.

Let \mathbb{F} be a field and let V and W be \mathbb{F} -vector spaces. A linear transformation from V to W is a function $f: V \to W$ such that

- (a) If $v_1, v_2 \in V$ then $f(v_1 + v_2) = f(v_1) + f(v_2)$,
- (b) If $c \in \mathbb{F}$ and $v \in V$ then f(cv) = cf(v).

One vector space can be a subspace of another.

Let V be an \mathbb{F} -vector space. A subspace of V is a subset $W \subseteq V$ such that

- (a) If $w_1, w_2 \in W$ then $w_1 + w_2 \in W$,
- (b) $0 \in W$,
- (c) If $w \in W$ then $-w \in W$,
- (d) If $w \in W$ and $c \in \mathbb{F}$ then $cw \in W$.

The tiniest vector space is the zero space.

The zero space, (0), is the set containing only 0 with the operations 0 + 0 = 0 and $c \cdot 0$, for $c \in \mathbb{F}$.

1.3. Kernels and images

The kernel, or null space, of a linear transformation $f: V \to W$ is the set

$$\ker(f) = \{ v \in V \mid f(v) = 0 \}.$$

The *image* of a linear transformation $f: V \to W$ is the set

$$\operatorname{im}(f) = \{ f(v) \mid v \in V \}.$$

Proposition 1.3.1. — Let $f: V \to W$ be a linear transformation. Then

- (a) ker f is a subspace of V, and
- (b) im f is a subspace of W.

Let S and T be sets and let $f: S \to T$ be a function. The function $f: S \to T$ is *injective* if f satisfies:

if $s_1, s_2 \in S$ and $f(s_1) = f(s_2)$ then $s_1 = s_2$.

The function $f: S \to T$ is surjective if f satisfies:

if $t \in T$ then there exists $s \in S$ such that f(s) = t.

Proposition 1.3.2. — Let $f: V \to W$ be a linear transformation. Then

(a) ker $f = \{0\}$ if and only if f is injective, and

(b) im f = W if and only if f is surjective.

The rank of a linear transformation $f: V \to W$ is the dimension of the image of f and the *nullity* of a linear transformation f is the dimension of the kernel of f,

 $\operatorname{rank}(f) = \operatorname{dim}(\operatorname{im}(f))$ and $\operatorname{nullity}(f) = \operatorname{dim}(\operatorname{ker}(f)).$

1.4. Bases and dimension

Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} . Let $\{v_1, v_2, \ldots, v_k\}$ be a subset of V.

• The span of the set $\{v_1, \ldots, v_k\}$ is

$$\operatorname{span}\{v_1, \dots, v_k\} = \{c_1v_1 + c_2v_2 + \dots + c_kv_k \mid c_1, c_2, \dots, c_k \in \mathbb{F}\}.$$

- A linear combination of v_1, v_2, \ldots, v_k is an element of span $\{v_1, \ldots, v_k\}$.
- The set $\{v_1, \ldots, v_k\}$ is *linearly independent* if it satisfies:

if $c_1, \ldots, c_k \in \mathbb{F}$ and $c_1v_1 + \cdots + c_kv_k = 0$ then $c_1 = 0, c_2 = 0, \ldots, c_k = 0$.

- A basis of V is a subset $B \subseteq V$ such that
 - (a) $\operatorname{span}(B) = V$,
 - (b) B is linearly independent.
- The dimension of V is the cardinality (number of elements) of a basis of V.

Theorem 1.4.1. — (Characterization of a basis) Let V be a vector space and let B be a subset of V. The following are equivalent:

(a) B is a basis of V;

(b) B is a minimal element of $\{S \subseteq V \mid \text{span}(S) = V\}$, ordered by inclusion;

(c) B is a maximal element of $\{L \subseteq V \mid L \text{ is linearly independent}\}$, ordered by inclusion.

Theorem 1.4.2. — (Existence of a basis) Let V be a vector space over a field \mathbb{F} . Then (a) V has a basis, and

(b) Any two bases of V have the same number of elements.

1.5. Addition, scalar multiplication and composition of linear transformations

The sum of two linear transformations $f_1: V \to W$ and $f_2: V \to W$ is the linear transformation $(f_1 + f_2): V \to W$.

$$(f_1 + f_2)(v) = f_1(v) + f_2(v), \quad \text{for } v \in V.$$

Let $f: V \to W$ be a linear transformation and let $c \in \mathbb{F}$. The scalar multiplication of f by c is the linear transformation $(cf): V \to W$ given by

$$(cf)(v) = c \cdot f(v), \quad \text{for } v \in V.$$

The composition of a linear transformation $f_2: V \to W$ and a linear transformation $f_1: W \to Z$ is the linear transformation $(f_1 \circ f_2): V \to Z$ given by

$$(f_1 \circ f_2)(v) = f_1(f_2(v)), \quad \text{for } v \in V$$

1.6. Matrices of linear transformations and change of basis matrices

Let V and W be \mathbb{F} -vector spaces. Let B be a basis of V and let C be a basis of W. Let $f: V \to W$ be a linear transformation. The matrix of $f: V \to W$ with respect to the bases B and C is the matrix

$$f_{CB} \in M_{C \times B}(\mathbb{F})$$
 given by $f(b) = \sum_{c \in C} f_{CB}(c, b)c$ for $b \in B$

(here we view matrices in $M_{C\times B}(\mathbb{F})$ as functions $A: C \times B \to \mathbb{F}$ so that the (c, b) entry of the matrix A is the value A(c, b)).

Proposition 1.6.1. — Let V and W and Z be \mathbb{F} -vector spaces with bases B, C and D, respectively. Let

$$f: V \to W, \quad g: V \to W, \quad h: W \to Z$$
 be linear transformations

and let $c \in \mathbb{F}$. Then

$$(cf)_{CB} = c \cdot f_{CB}, \qquad f_{CB} + g_{CB} = (f+g)_{CB} \qquad and \qquad (h \circ g)_{DB} = h_{DC}g_{CB}.$$

Let V be an \mathbb{F} -vector space and let B and C be bases of V. The change of basis matrix from B to C is the matrix $P_{CB} \in M_{C \times B}(\mathbb{F})$ given by

(1.6.1)
$$b = \sum_{c \in C} P_{CB}(c, b)c, \quad \text{for } b \in B$$

Proposition 1.6.2. — Let $g: V \to W$ and $f: V \to V$ be linear transformations. Let

 B_1 and B_2 be bases of V, and let C_1 and C_2 be bases of W,

and let $P_{B_1B_2}$ and $P_{C_2C_1}$ be the change of basis matrices defined as in (1.6.1). Then

$$g_{C_2B_2} = P_{C_2C_1}g_{C_1B_1}P_{B_1B_2}$$
 and $f_{B_2B_2} = P_{B_1B_2}^{-1}f_{B_1B_1}P_{B_1B_2}$.

Proposition 1.6.3. — Let $P \in M_n(\mathbb{F})$. The matrix P is invertible if and only if the columns of P are linearly independent in \mathbb{F}^n .

1.6.1. Minimal and characteristic polynomials (annihilators of $\mathbb{F}[x]$ -modules). — Let $A \in M_n(\mathbb{F})$. Let

 $\varphi_A \colon \mathbb{F}[x] \longrightarrow M_n(\mathbb{F})$ $c_0 + c_1 x + \dots + c_r x^r \mapsto c_0 + c_1 A + \dots + c_r A^r$

The kernel of φ_A is

$$\ker(\varphi_A) = \{ p(x) \in \mathbb{F}[x] \mid \varphi_A(p(x)) = 0. \}$$

Proposition 1.6.4. — There exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\ker(\varphi_A) = m(x)\mathbb{F}[x]$.

Let $A \in M_n(\mathbb{F})$.

• The minimal polynomial of A is the monic polynomial $m(x) \in \mathbb{F}[x]$ such that

$$\ker \varphi_A = m(x)\mathbb{F}[x].$$

• The matrix $x - A \in M_n(\mathbb{F}[x])$. The characteristic polynomial of A is det(x - A).

Proposition 1.6.5. — (Cayley-Hamlton theorem) Let $A \in M_n(\mathbb{F})$ and let m(x) be the minimal polynomial of A. Then

$$\det(x - A) \in m(x)\mathbb{F}[x].$$

1.6.2. Diagonalization (simple and semisimple $\mathbb{F}[x]$ -modules). — Let \mathbb{F} be a field and let $A \in M_n(\mathbb{F})$.

• A subspace $U \subseteq \mathbb{F}^n$ is A-invariant, or U is an A-submodule of \mathbb{F}^n , if U satisfies:

if
$$u \in U$$
 then $Au \in U$.

• Let $\lambda \in \mathbb{F}$. An eigenvector of A of eigenvalue λ is $p \in \mathbb{F}^n$ such that $p \neq 0$ and

$$Ap = \lambda p.$$

• The matrix A is *diagonalizable* if there exist $P \in GL_n(\mathbb{F})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ such that

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

HW: Show that p is an eigenvector of A if and only if $\mathbb{F}p$ is A-invariant.

HW: Show that p is an eigenvector of A if and only if $p \in \ker(A - \lambda)$.

HW: Show that if $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and $P^{-1}AP = D$ then

$$det(A) = \lambda_1 \cdots \lambda_n$$
 and $det(x - A) = (x - \lambda_1) \cdots (x - \lambda_n).$

Proposition 1.6.6. — Let \mathbb{F} be a field and let $A \in M_n(\mathbb{F})$.

(a) If p_1, \ldots, p_k are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_k$ and $\lambda_1, \ldots, \lambda_k$ are all distinct then p_1, \ldots, p_k are linearly independent.

(b) Let $A \in M_n(\mathbb{F})$. Then A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.

(c) If \mathbb{F} is algebraically closed then A has an eigenvector.

1.6.3. Some proofs. -

Proposition 1.6.7. — Let V and W and Z be \mathbb{F} -vector spaces with bases B, C and D, respectively. Let

 $f: V \to W, \quad g: V \to W, \quad h: W \to Z$ be linear transformations and let $c \in \mathbb{F}$. Then

$$(cf)_{CB} = c \cdot f_{CB}, \qquad f_{CB} + g_{CB} = (f+g)_{CB} \qquad and \qquad (h \circ g)_{DB} = h_{DC}g_{CB}$$

Proof. — Let $b \in B$ and $c' \in C$. Taking the coefficient of c' on each side of

$$\sum_{c \in C} (\alpha f)_{CB}(c, b)c = (\alpha f)(b) = \alpha \cdot f(b) = \alpha \cdot \left(\sum_{c \in C} f_{CB}(c, b)c\right) = \sum_{c \in C} \alpha f_{CB}(c, b)c$$

gives $(\alpha f)_{CB}(c', b) = \alpha \cdot f_{CB}(c', b)$. So $(\alpha f)_{CB} = \alpha \cdot f_{CB}$.

Let $b \in B$ and $c' \in C$. Taking the coefficient of c' on each side of

$$\sum_{c \in C} (f+g)_{CB}(c,b)c = (f+g)(b) = f(b) + g(b) = \sum_{c \in C} (f_{CB}(c,b)c + \sum_{c \in C} g_{CB}(c,b)c) = \sum_{c \in C} (f_{CB}(c,b)c + g_{CB}(c,b)c + g_{CB}(c,b)c) = \sum_{c \in C} (f_{CB}(c,b) + g_{CB}(c,b)$$

gives $(f_{CB} + g_{CB})(c', b) = f_{CB}(c', b) + g_{CB}(c', b)$. So $f_{CB} + g_{CB} = (f + g)_{CB}$.

Let $b \in B$ and $d' \in D$. Taking the coefficient of d' on each side of

$$\sum_{d \in D} (h \circ g)_{DB}(d, b)d = (h \circ g)(b) = h(g(b)) = h\left(\sum_{c \in C} g_{CB}(c, b)c\right)$$
$$= \sum_{c \in C} g_{CB}(c, b)h(c) = \sum_{c \in C} \sum_{d \in D} g_{CB}(c, b)h_{DC}(d, c)d,$$

gives $(h \circ g)_{DB}(d', b) = \sum_{c \in C} \sum_{d \in D} h_{DC}(d, c)g_{CB}(c, b) = (h_{DC}g_{CB})(d', b).$ So $(h \circ g)_{DB} = (h_{DC}g_{CB}).$

Proposition 1.6.8. — Let $g: V \to W$ and $f: V \to V$ be linear transformations. Let

 B_1 and B_2 be bases of V, and let C_1 and C_2 be bases of W,

and let $P_{B_1B_2}$ and $P_{C_2C_1}$ be the change of basis matrices defined as in (1.6.1). Then

$$g_{C_2B_2} = P_{C_2C_1}g_{C_1B_1}P_{B_1B_2}$$
 and $f_{B_2B_2} = P_{B_1B_2}^{-1}f_{B_1B_1}P_{B_1B_2}$.

Proof. — Let $\beta, \beta' \in B_2$. Comparing coefficients of β' on each side of

$$\beta = \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) b = \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) \sum_{\beta' \in B_2} P_{B_2 B_1}(\beta', b) \beta'$$
$$= \sum_{b \in B_1} \sum_{\beta' \in B_2} P_{B_2 B_1}(\beta', b) P_{B_1 B_2}(b, \beta) \beta' = \sum_{b \in B_1} \sum_{\beta' \in B_2} (P_{B_2 B_1} P_{B_1 B_2})(\beta', \beta) \beta'$$

gives

$$(P_{B_2B_1}P_{B_1B_2})(\beta',\beta) = \delta_{\beta'\beta}.$$

So $P_{B_2B_1} = P_{B_1B_2}^{-1}$. Let $\beta \in B_1$ and $c \in B_2$. Taking the coefficient of b' on each side of

$$f(c) = \sum_{c' \in B_2} f_{B_2 B_2}(c', c)c' = \sum_{b' \in B_1} f_{B_2 B_2}(c', c)P_{B_1 B_2}(b', c')b'$$

and

16

$$f(c) = f\left(\sum_{b \in B_1} P_{B_1 B_2}(b, c)b\right) = \sum_{b \in B_1} P_{B_1 B_2}(b, c)f(b) = \sum_{b \in B_1} P_{B_1 B_2}(b, c)\sum_{b' \in B_1} f_{B_1 B_1}(b', b)b'$$

gives

$$(P_{B_1B_2}f_{B_2B_2})(\beta,b) = (f_{B_1B_1}P_{B_1B_2})(\beta,b).$$

So

 $P_{B_1B_2}f_{B_2B_2} = f_{B_1B_1}P_{B_1B_2}$ and thus $f_{B_2B_2} = P_{B_1B_2}^{-1}f_{B_1B_1}P_{B_1B_2}$. Let $\gamma' \in C_2$ and $\beta \in B_2$. Taking the coefficient of γ on each side of

$$\sum_{\gamma \in C_2} g_{C_2 B_2}(\gamma, \beta) \gamma = g(\beta) = g(\sum_{b \in B_1} P_{B_1 B_2}(b, \beta)b) = \sum_{b \in B_1} P_{B_1 B_2}(b, \beta)g(b)$$

$$= \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) \sum_{c \in C_1} g_{C_1 B_1}(c, b)c$$

$$= \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) \sum_{c \in C_1} g_{C_1 B_1}(c, b) \sum_{\gamma \in C_2} P_{C_2 C_1}(\gamma, c)\gamma$$

$$= \sum_{b \in B_1, c \in C_1, \gamma \in C_2} P_{C_2 C_1}(\gamma, c)g_{C_1 B_1}(c, b)P_{B_1 B_2}(b, \beta)\gamma$$

$$= \sum_{\gamma \in C_2} (P_{C_2 C_1} g_{C_1 B_1} P_{B_1 B_2})(\gamma, \beta)\gamma$$

gives $g_{C_2B_2}(\gamma',\beta) = (P_{C_2C_1}g_{C_1B_1}P_{B_1B_2})(\gamma',\beta)$. So $g_{C_2B_2} = P_{C_2C_2}g_{C_1B_1}P_{B_1B_2}$.

Proposition 1.6.9. — Let $P \in M_n(\mathbb{F})$. The matrix P is invertible if and only if the columns of P are linearly independent in \mathbb{F}^n .

Proof. —

⇒: Assume P is invertible. Let p_1, \ldots, p_n be the columns of P. To show: $\{p_1, \ldots, p_n\}$ is linearly independent. Assume $c_1, \ldots, c_n \in \mathbb{F}$ and $c_1p_1 + \cdots + c_np_n = 0$. Let $c = (c_1, \ldots, c_n)^t \in \mathbb{F}^n$. Since $c_1p_1 + \cdots + c_np_n = 0$ then Pc = 0. So $c_1 = 0, \ldots, c_n = 0$. \Leftarrow : Assume the columns of P are linearly independent. To show: There exists $Q \in M_n(\mathbb{F})$ such that QP = 1. Let p_1, \ldots, p_n be the columns of P. Since $B = \{p_1, \ldots, p_n\}$ is linearly independent and dim $(\mathbb{F}^n) = n$ then B is a maximal linearly independent set. Thus, by Theorem 1.4.1, B is a basis.

Let $S = \{e_1, \ldots, e_n\}$ where e_i has 1 in the *i*th spot and 0 elsewhere. Then $P = P_{BS}$, the change of basis matrix from S to B.

Let $Q = P_{SB}$, the change of basis matrix from B to S. Then $QP = P_{SB}P_{BS} = P_{SS} = 1$. So P is invertible.

Proposition 1.6.10. — There exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\ker(\varphi_A) = m(x)\mathbb{F}[x]$.

Let $r = \min\{\deg(p) \mid p \in \ker(\varphi_A)\}$ and let $p(x) \in \ker(\varphi_A)$ with $\deg(p) = r$ and let

$$m(x) = \frac{1}{a_r} p(x),$$
 where $p(x) = a_r x^r + \dots + a_1 x + a_0.$

To show: $\ker(\varphi_A) = m(x)\mathbb{F}[x]$. To show: (a) $\ker(\varphi_A) \subseteq m(x)\mathbb{F}[x]$. To show: (b) $\ker(\varphi_A) \supseteq m(x)\mathbb{F}[x]$.

(a) Assume
$$f \in \ker(\varphi_A)$$
.
Then there exist $q(x), g(x) \in \mathbb{F}[x]$ with $\deg(g(x)) < r$ such that
 $f(x) = q(x)m(x) + g(x)$.

Since $f(x) \in \ker(\varphi_A)$ and $q(x)m(x) \in \ker(\varphi_A)$ then $g(x) \in \ker(\varphi_A)$. Since $\deg(g(x)) < r$ then g(x) = 0. So f(x) = q(x)m(x). So $f(x) \in m(x)\mathbb{F}[x]$. (b) Let $f(x) \in m(x)\mathbb{F}[x]$. To show: $f(x) \in \ker(\varphi_A)$. Since $f(x) \in m(x)\mathbb{F}[x]$ there exists $q(x) \in \mathbb{F}[x]$ such that f(x) = q(x)m(x). So $f(A) = q(A)m(A) = q(A) \cdot 0 = 0$. So $f(A) \in \ker(\varphi_A)$. So $\ker(\varphi_A) = m(x)\mathbb{F}[x]$.

So $\operatorname{Ker}(\varphi_A) = \operatorname{In}(x) \operatorname{Ir}[x].$

Proposition 1.6.11. — (Cayley-Hamlton theorem) Let $A \in M_n(\mathbb{F})$ and let m(x) be the minimal polynomial of A. Then

$$\det(x - A) \in m(x)\mathbb{F}[x].$$

Proof. — Let $p = \det(x - A)$. BY CRAMER'S RULE,

(x - A)adj $(x - A) = det(x - A)1_n$, where 1_n is the $n \times n$ identity matrix.

Evaluating both sides at A gives that p(A) = 0. So $p \in \ker(\varphi_A)$.

Proposition 1.6.12. — Let \mathbb{F} be a field and let $A \in M_n(\mathbb{F})$. (a) If p_1, \ldots, p_k are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_k$ and $\lambda_1, \ldots, \lambda_k$ are all distinct then p_1, \ldots, p_k are linearly independent. (b) Let $A \in M_n(\mathbb{F})$. Then A is diagonalizable if and only if there exist n linearly indepen-

(b) Let $A \in M_n(\mathbb{F})$. Then A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.

(c) If \mathbb{F} is algebraically closed then A has an eigenvector.

Proof. (a) Assume $c_1p_1 + \dots + c_np_n = 0$. To show: If $j \in \{1, \dots, n\}$ then $c_j = 0$. Assume $j \in \{1, \dots, n\}$. Then $0 = (A - d_1) \cdots (A - d_{j-1})(A - d_{j+1}) \cdots (A - d_n)(c_1p_1 + \dots + c_np_n)$ $= \cdots$

$$= c_j (d_j - d_1) \cdots (d_j - d_{j-1}) (d_j - d_{j+1}) \cdots (d_j - d_n) p_j.$$

So $c_j p_j = 0$. So $c_j = 0$.

(b) Let p_1, \ldots, p_n be the columns of P. Then AP = PD gives that p_1, \ldots, p_n are eigenvectors of A.

Rewriting this equation as

$$AP = PD$$
, where $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,

the eigenvectors of A are the columns of P. By Proposition 1.6.3, P being invertible is equivalent to its n columns being linearly independent.

(c) Since \mathbb{F} is algebraically closed m(x) factors: there exists $a_1, \ldots, a_n \in \mathbb{F}$ such that

$$m(x) = (x - a_1) \cdots (x - a_n).$$

Since $(A-a_2)\cdots(A-a_n) \neq 0$ there exists $w \in V$ such that $v = (A-a_2)\cdots(A-a_n)w \neq 0$. Then $(A-a_1)(v) = m(A)(w) = 0$. So $A(v) = a_1v$.