
CHAPTER 1

GTLA

1.1. Matrices and operations

Let F be a field. Let m,n 2 Z>0.

• An m ⇥ n matrix with entries in F is a table of elements of F with m rows and n

columns. More precisely, an m⇥ n matrix with entries in F is a function

A : {1, . . . ,m}⇥ {1, . . . , n} �! F.

• A column vector of length n is an n⇥ 1 matrix.
• A row vector of length n is an 1⇥ n matrix.
• The (i, j) entry of a matrix A is the element A(i, j) in row i and column j of A.
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Let Mm⇥n(F) be the set of m⇥ n matrices with entries in F.
• The sum of m⇥ n matrices A and B is the m⇥ n matrix A+B given by

(A+B)(i, j) = A(i, j) + B(i, j), for i 2 {1, . . . ,m} and j 2 {1, . . . , n}.

• The scalar multiplication of an element c 2 F with an m⇥n matrix A is the m⇥n

matrix c · A given by

(c · A)(i, j) = c · A(i, j), for i 2 {1, . . . ,m} and j 2 {1, . . . , n}.

• The product of an m⇥ n matrix A and an n⇥ p matrix B is the m⇥ p matrix AB

given by

(AB)(i, k) =
nX

j=1

A(i, j)B(j, k)

= A(i, 1)B(1, k) + A(i, 2)B(2, k) + · · ·+ A(i, n)B(n, k),

for i 2 {1, . . . ,m} and k 2 {1, . . . , p}.

The zero matrix is the m⇥ n matrix 0 2 Mm⇥n(F) given by

0(i, j) = 0, for i 2 {1, . . . ,m} and j 2 {1, . . . , n}.
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The negative of a matrix A 2 Mm⇥n(F) is the matrix �A 2 Mm⇥n(F) given by

(�A)(i, j) = �A(i, j), for i 2 {1, . . . ,m} and j 2 {1, . . . , n}.

The following proposition says that Mm⇥n(F) is an F-vector space.
Proposition 1.1.1. — Let m,n 2 Z>0 and let Mm⇥n(F) be the set of m ⇥ n matrices
with entries in F.
(a) If A,B,C 2 Mm⇥n(F) then A+ (B + C) = (A+B) + C.
(b) If A,B 2 Mm⇥n(F) then A+B = B + A.
(c) If A 2 Mm⇥n(F) then 0 + A = A and A+ 0 = A.
(d) If A 2 Mm⇥n(F) then (�A) + A = 0 and A+ (�A) = 0.
(e) If A 2 Mm⇥n(F) and c1, c2 2 F then c1 · (c2 · A) = (c1c2) · A.
(f) If A 2 Mm⇥n(F) and 1 2 F is the identity in F then 1 · A = A.

The Kronecker delta is given by

�ij =

(
1, if i = j,

0, otherwise.

The identity matrix is the n⇥ n matrix 1 2 Mn⇥n(F) given by

1(i, j) = �ij, for i 2 {1, . . . ,m} and j 2 {1, . . . , n}.

The following proposition says that Mn(F) is a ring (usually noncommutative).

Proposition 1.1.2. — Let n 2 Z>0 and let Mn(F) be the set of n⇥ n matrices in F.
(a) If A,B,C 2 Mn(F) then A+ (B + C) = (A+B) + C.
(b) If A,B 2 Mn(F) then A+B = B + A.
(c) If A 2 Mn(F) then 0 + A = A and A+ 0 = A.
(d) If A 2 Mn(F) then (�A) + A = 0 and A+ (�A) = 0.
(e) If A,B,C 2 Mn(F) then A(BC) = (AB)C.
(f) If A,B,C 2 Mn(F) then (A+B)C = AC +BC and C(A+B) = CA+ CB.
(g) If A 2 Mn(F) then 1A = A and A1 = A.

The transpose of an m⇥ n matrix A is the n⇥m matrix A
t given by

A
t(i, j) = A(j, i), for i 2 {1, . . . , n} and j 2 {1, . . . ,m}.

The following proposition says that transpose is an antiautomorphism of the ringMn(F).
Proposition 1.1.3. — Let m,n 2 Z>0, let Mm⇥n(F) be the set of m⇥ n matrices with
entries in F, and let Mn(F) be the set of n⇥ n matrices in F.
(a) If A,B 2 Mm⇥n(F) then (A+B)t = A

t +B
t,

(b) If A 2 Mm⇥n(F) and c 2 F then (c · A)t = c · A
t,

(c) If A,B 2 Mn(F) then (AB)t = B
t
A

t.
(d) If A 2 Mn(F) then (At)t = A.
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1.2. Vector spaces and linear transformations

Let F be a field. A F-vector space is a set V with functions

V ⇥ V ! V

(v1, v2) 7! v1 + v2
and

K⇥ V ! V

(c, v) 7! cv

(addition and scalar multiplication) such that

(a) If v1, v2, v3 2 V then (v1 + v2) + v3 = v1 + (v2 + v3),
(b) There exists 0 2 V such that if v 2 V then 0 + v = v and v + 0 = v,
(c) If v 2 V then there exists �v 2 V such that v + (�v) = 0 and (�v) + v = 0,
(d) If v1, v2 2 V then v1 + v2 = v2 + v1,
(e) If c 2 F and v1, v2 2 V then c(v1 + v2) = cv1 + cv2,
(f) If c1, c2 2 F and v 2 V then (c1 + c2)v = c1v + c2v,
(g) If c1, c2 2 F and v 2 V then c1(c2v) = (c1c2)v,
(h) If v 2 V then 1v = v.

Linear transformations are for comparing vector spaces.

Let F be a field and let V and W be F-vector spaces. A linear transformation from V to
W is a function f : V ! W such that

(a) If v1, v2 2 V then f(v1 + v2) = f(v1) + f(v2),
(b) If c 2 F and v 2 V then f(cv) = cf(v).

One vector space can be a subspace of another.

Let V be an F-vector space. A subspace of V is a subset W ✓ V such that

(a) If w1, w2 2 W then w1 + w2 2 W ,
(b) 0 2 W ,
(c) If w 2 W then �w 2 W ,
(d) If w 2 W and c 2 F then cw 2 W .

The tiniest vector space is the zero space.

The zero space, (0), is the set containing only 0 with the operations 0 + 0 = 0 and c · 0,
for c 2 F.

1.3. Kernels and images

The kernel, or null space, of a linear transformation f : V ! W is the set

ker(f) = {v 2 V | f(v) = 0}.

The image of a linear transformation f : V ! W is the set

im(f) = {f(v) | v 2 V }.

Proposition 1.3.1. — Let f : V ! W be a linear transformation. Then

(a) ker f is a subspace of V , and
(b) im f is a subspace of W .
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Let S and T be sets and let f : S ! T be a function.
The function f : S ! T is injective if f satisfies:

if s1, s2 2 S and f(s1) = f(s2) then s1 = s2.

The function f : S ! T is surjective if f satisfies:

if t 2 T then there exists s 2 S such that f(s) = t.

Proposition 1.3.2. — Let f : V ! W be a linear transformation. Then

(a) ker f = {0} if and only if f is injective, and
(b) im f = W if and only if f is surjective.

The rank of a linear transformation f : V ! W is the dimension of the image of f and
the nullity of a linear transformation f is the dimension of the kernel of f ,

rank(f) = dim(im(f)) and nullity(f) = dim(ker(f)).

1.4. Bases and dimension

Let F be a field and let V be a vector space over F. Let {v1, v2, . . . , vk} be a subset of
V .

• The span of the set {v1, . . . , vk} is

span{v1, . . . , vk} = {c1v1 + c2v2 + · · ·+ ckvk | c1, c2, . . . , ck 2 F}.

• A linear combination of v1, v2, . . . , vk is an element of span{v1, . . . , vk}.
• The set {v1, . . . , vk} is linearly independent if it satisfies:

if c1, . . . , ck 2 F and c1v1 + · · ·+ ckvk = 0 then c1 = 0, c2 = 0, . . . , ck = 0.

• A basis of V is a subset B ✓ V such that
(a) span(B) = V ,
(b) B is linearly independent.

• The dimension of V is the cardinality (number of elements) of a basis of V .

Theorem 1.4.1. — (Characterization of a basis) Let V be a vector space and let B be
a subset of V . The following are equivalent:
(a) B is a basis of V ;
(b) B is a minimal element of {S ✓ V | span(S) = V }, ordered by inclusion;
(c) B is a maximal element of {L ✓ V | L is linearly independent}, ordered by inclusion.

Theorem 1.4.2. — (Existence of a basis) Let V be a vector space over a field F. Then
(a) V has a basis, and
(b) Any two bases of V have the same number of elements.
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1.5. Addition, scalar multiplication and composition of linear transformations

The sum of two linear transformations f1 : V ! W and f2 : V ! W is the linear
transformation (f1 + f2) : V ! W .

(f1 + f2)(v) = f1(v) + f2(v), for v 2 V .

Let f : V ! W be a linear transformation and let c 2 F. The scalar multiplication of f
by c is the linear transformation (cf) : V ! W given by

(cf)(v) = c · f(v), for v 2 V .

The composition of a linear transformation f2 : V ! W and a linear transformation
f1 : W ! Z is the linear transformation (f1 � f2) : V ! Z given by

(f1 � f2)(v) = f1(f2(v)), for v 2 V .

1.6. Matrices of linear transformations and change of basis matrices

Let V and W be F-vector spaces. Let B be a basis of V and let C be a basis of W .
Let f : V ! W be a linear transformation. The matrix of f : V ! W with respect to the
bases B and C is the matrix

fCB 2 MC⇥B(F) given by f(b) =
X

c2C

fCB(c, b)c for b 2 B

(here we view matrices in MC⇥B(F) as functions A : C ⇥ B ! F so that the (c, b) entry
of the matrix A is the value A(c, b)).

Proposition 1.6.1. — Let V and W and Z be F-vector spaces with bases B, C and D,
respectively. Let

f : V ! W, g : V ! W, h : W ! Z be linear transformations

and let c 2 F. Then
(cf)CB = c · fCB, fCB + gCB = (f + g)CB and (h � g)DB = hDCgCB.

Let V be an F-vector space and let B and C be bases of V . The change of basis matrix
from B to C is the matrix PCB 2 MC⇥B(F) given by

(1.6.1) b =
X

c2C

PCB(c, b)c, for b 2 B.

Proposition 1.6.2. — Let g : V ! W and f : V ! V be linear transformations. Let

B1 and B2 be bases of V , and let C1 and C2 be bases of W ,

and let PB1B2 and PC2C1 be the change of basis matrices defined as in (1.6.1). Then

gC2B2 = PC2C1gC1B1PB1B2 and fB2B2 = P
�1
B1B2

fB1B1PB1B2 .

Proposition 1.6.3. — Let P 2 Mn(F). The matrix P is invertible if and only if the
columns of P are linearly independent in Fn.
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1.6.1. Minimal and characteristic polynomials (annihilators of F[x]-modules).
— Let A 2 Mn(F). Let

'A : F[x] ! Mn(F)
c0 + c1x+ · · ·+ crx

r
7! c0 + c1A+ · · · crA

r

The kernel of 'A is

ker('A) = {p(x) 2 F[x] | 'A(p(x)) = 0.}

Proposition 1.6.4. — There exists a unique monic polynomial m(x) 2 F[x] such that
ker('A) = m(x)F[x].

Let A 2 Mn(F).
• The minimal polynomial of A is the monic polynomial m(x) 2 F[x] such that

ker'A = m(x)F[x].

• The matrix x�A 2 Mn(F[x]). The characteristic polynomial of A is det(x�A).

Proposition 1.6.5. — (Cayley-Hamlton theorem) Let A 2 Mn(F) and let m(x) be the
minimal polynomial of A. Then

det(x� A) 2 m(x)F[x].

1.6.2. Diagonalization (simple and semisimple F[x]-modules). — Let F be a field
and let A 2 Mn(F).

• A subspace U ✓ Fn is A-invariant, or U is an A-submodule of Fn, if U satisfies:

if u 2 U then Au 2 U .

• Let � 2 F. An eigenvector of A of eigenvalue � is p 2 Fn such that p 6= 0 and

Ap = �p.

• The matrix A is diagonalizable if there exist P 2 GLn(F) and �1, . . . ,�n 2 F such
that

P
�1
AP = diag(�1, . . . ,�n).

HW: Show that p is an eigenvector of A if and only if Fp is A-invariant.

HW: Show that p is an eigenvector of A if and only if p 2 ker(A� �).

HW: Show that if D = diag(�1, . . . ,�n) and P
�1
AP = D then

det(A) = �1 · · ·�n and det(x� A) = (x� �1) · · · (x� �n).

Proposition 1.6.6. — Let F be a field and let A 2 Mn(F).
(a) If p1, . . . , pk are eigenvectors of A with eigenvalues �1, . . . ,�k and �1, . . . ,�k are all
distinct then p1, . . . , pk are linearly independent.
(b) Let A 2 Mn(F). Then A is diagonalizable if and only if there exist n linearly indepen-
dent eigenvectors of A.
(c) If F is algebraically closed then A has an eigenvector.
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1.6.3. Some proofs. —

Proposition 1.6.7. — Let V and W and Z be F-vector spaces with bases B, C and D,
respectively. Let

f : V ! W, g : V ! W, h : W ! Z be linear transformations

and let c 2 F. Then
(cf)CB = c · fCB, fCB + gCB = (f + g)CB and (h � g)DB = hDCgCB.

Proof. — Let b 2 B and c
0
2 C. Taking the coe�cient of c0 on each side of

X

c2C

(↵f)CB(c, b)c = (↵f)(b) = ↵ · f(b) = ↵ ·

⇣X

c2C

fCB(c, b)c
⌘
=

X

c2C

↵fCB(c, b)c

gives (↵f)CB(c
0
, b) = ↵ · fCB(c

0
, b).

So (↵f)CB = ↵ · fCB.

Let b 2 B and c
0
2 C. Taking the coe�cient of c0 on each side of

X

c2C

(f + g)CB(c, b)c = (f + g)(b) = f(b) + g(b) =
X

c2C

(fCB(c, b)c+
X

c2C

gCB(c, b)c

=
X

c2C

(fCB(c, b)c+ gCB(c, b)c =
X

c2C

(fCB(c, b) + gCB(c, b))c

gives (fCB + gCB)(c
0
, b) = fCB(c

0
, b) + gCB(c

0
, b).

So fCB + gCB = (f + g)CB.

Let b 2 B and d
0
2 D. Taking the coe�cient of d0 on each side of

X

d2D

(h � g)DB(d, b)d = (h � g)(b) = h(g(b)) = h

⇣X

c2C

gCB(c, b)c
⌘

=
X

c2C

gCB(c, b)h(c) =
X

c2C

X

d2D

gCB(c, b)hDC(d, c)d,

gives (h � g)DB(d
0
, b) =

X

c2C

X

d2D

hDC(d,
0
c)gCB(c, b) = (hDCgCB)(d

0
, b).

So (h � g)DB = (hDCgCB).

Proposition 1.6.8. — Let g : V ! W and f : V ! V be linear transformations. Let

B1 and B2 be bases of V , and let C1 and C2 be bases of W ,

and let PB1B2 and PC2C1 be the change of basis matrices defined as in (1.6.1). Then

gC2B2 = PC2C1gC1B1PB1B2 and fB2B2 = P
�1
B1B2

fB1B1PB1B2 .

Proof. — Let �, �0
2 B2. Comparing coe�cients of �0 on each side of

� =
X

b2B1

PB1B2(b, �)b =
X

b2B1

PB1B2(b, �)
X

�02B2

PB2B1(�
0
, b)�0

=
X

b2B1

X

�02B2

PB2B1(�
0
, b)PB1B2(b, �)�

0 =
X

b2B1

X

�02B2

(PB2B1PB1B2)(�
0
, �)�0

gives
(PB2B1PB1B2)(�

0
, �) = ��0�.
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So PB2B1 = P
�1
B1B2

.

Let � 2 B1 and c 2 B2. Taking the coe�cient of b0 on each side of

f(c) =
X

c02B2

fB2B2(c
0
, c)c0 =

X

b02B1

fB2B2(c
0
, c)PB1B2(b

0
, c

0)b0

and

f(c) = f

⇣ X

b2B1

PB1B2(b, c)b
⌘
=

X

b2B1

PB1B2(b, c)f(b) =
X

b2B1

PB1B2(b, c)
X

b02B1

fB1B1(b
0
, b)b0

gives
(PB1B2fB2B2)(�, b) = (fB1B1PB1B2)(�, b).

So
PB1B2fB2B2 = fB1B1PB1B2 and thus fB2B2 = P

�1
B1B2

fB1B1PB1B2 .

Let �0
2 C2 and � 2 B2. Taking the coe�cient of � on each side of

X

�2C2

gC2B2(�, �)� = g(�) = g(
X

b2B1

PB1B2(b, �)b) =
X

b2B1

PB1B2(b, �)g(b)

=
X

b2B1

PB1B2(b, �)
X

c2C1

gC1B1(c, b)c

=
X

b2B1

PB1B2(b, �)
X

c2C1

gC1B1(c, b)
X

�2C2

PC2C1(�, c)�

=
X

b2B1,c2C1,�2C2

PC2C1(�, c)gC1B1(c, b)PB1B2(b, �)�

=
X

�2C2

(PC2C1gC1B1PB1B2)(�, �)�

gives gC2B2(�
0
, �) = (PC2C1gC1B1PB1B2)(�

0
, �). So gC2B2 = PC2C2gC1B1PB1B2 .

Proposition 1.6.9. — Let P 2 Mn(F). The matrix P is invertible if and only if the
columns of P are linearly independent in Fn.

Proof. —

): Assume P is invertible. Let p1, . . . , pn be the columns of P .
To show: {p1, . . . , pn} is linearly independent.
Assume c1, . . . , cn 2 F and c1p1 + · · ·+ cnpn = 0.
Let c = (c1, . . . , cn)t 2 Fn.
Since c1p1 + · · ·+ cnpn = 0 then Pc = 0.
So c = P

�1
Pc = P

�10 = 0.
So c1 = 0, . . . , cn = 0.

(: Assume the columns of P are linearly independent.
To show: There exists Q 2 Mn(F) such that QP = 1.
Let p1, . . . , pn be the columns of P .
Since B = {p1, . . . , pn} is linearly independent and dim(Fn) = n then B is a maximal
linearly independent set.
Thus, by Theorem 1.4.1, B is a basis.
Let S = {e1, . . . , en)} where ei has 1 in the ith spot and 0 elsewhere.
Then P = PBS, the change of basis matrix from S to B.
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Let Q = PSB, the change of basis matrix from B to S.
Then QP = PSBPBS = PSS = 1.
So P is invertible.

Proposition 1.6.10. — There exists a unique monic polynomial m(x) 2 F[x] such that
ker('A) = m(x)F[x].

Proof. —

Let r = min{deg(p) | p 2 ker('A)} and let p(x) 2 ker('A) with deg(p) = r and let

m(x) =
1

ar
p(x), where p(x) = arx

r + · · ·+ a1x+ a0.

To show: ker('A) = m(x)F[x].
To show: (a) ker('A) ✓ m(x)F[x].
To show: (b) ker('A) ◆ m(x)F[x].

(a) Assume f 2 ker('A).
Then there exist q(x), g(x) 2 F[x] with deg(g(x)) < r such that

f(x) = q(x)m(x) + g(x).

Since f(x) 2 ker('A) and q(x)m(x) 2 ker('A) then g(x) 2 ker('A).
Since deg(g(x)) < r then g(x) = 0.
So f(x) = q(x)m(x).
So f(x) 2 m(x)F[x].

(b) Let f(x) 2 m(x)F[x].
To show: f(x) 2 ker('A).
Since f(x) 2 m(x)F[x] there exists q(x) 2 F[x] such that f(x) = q(x)m(x).
So f(A) = q(A)m(A) = q(A) · 0 = 0.
So f(A) 2 ker('A).

So ker('A) = m(x)F[x].

Proposition 1.6.11. — (Cayley-Hamlton theorem) Let A 2 Mn(F) and let m(x) be the
minimal polynomial of A. Then

det(x� A) 2 m(x)F[x].

Proof. — Let p = det(x� A). BY CRAMER’S RULE,

(x� A)adj(x� A) = det(x� A)1n, where 1n is the n⇥ n identity matrix.

Evaluating both sides at A gives that p(A) = 0. So p 2 ker('A).

Proposition 1.6.12. — Let F be a field and let A 2 Mn(F).
(a) If p1, . . . , pk are eigenvectors of A with eigenvalues �1, . . . ,�k and �1, . . . ,�k are all
distinct then p1, . . . , pk are linearly independent.
(b) Let A 2 Mn(F). Then A is diagonalizable if and only if there exist n linearly indepen-
dent eigenvectors of A.
(c) If F is algebraically closed then A has an eigenvector.
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Proof. — (a) Assume c1p1 + · · ·+ cnpn = 0.
To show: If j 2 {1, . . . , n} then cj = 0.
Assume j 2 {1, . . . , n}.
Then

0 = (A� d1) · · · (A� dj�1)(A� dj+1) · · · (A� dn)(c1p1 + · · ·+ cnpn)

= · · ·

= cj(dj � d1) · · · (dj � dj�1)(dj � dj+1) · · · (dj � dn)pj.

So cjpj = 0. So cj = 0.

(b) Let p1, . . . , pn be the columns of P . Then AP = PD gives that p1, . . . , pn are eigen-
vectors of A.

Rewriting this equation as

AP = PD, where D = diag(�1, . . . ,�n),

the eigenvectors of A are the columns of P . By Proposition 1.6.3, P being invertible is
equivalent to its n columns being linearly independent.

(c) Since F is algebraically closed m(x) factors: there exists a1, . . . , an 2 F such that

m(x) = (x� a1) · · · (x� an).

Since (A�a2) · · · (A�an) 6= 0 there exists w 2 V such that v = (A�a2) · · · (A�an)w 6= 0.
Then (A� a1)(v) = m(A)(w) = 0. So A(v) = a1v.


