CHAPTER 1

GTLA

1.1. Matrices and operations

Let \mathbb{F} be a field. Let $m, n \in \mathbb{Z}_{>0}$.

- An $m \times n$ matrix with entries in \mathbb{F} is a table of elements of \mathbb{F} with m rows and n columns. More precisely, an $m \times n$ matrix with entries in \mathbb{F} is a function

$$
A:\{1, \ldots, m\} \times\{1, \ldots, n\} \longrightarrow \mathbb{F}
$$

- A column vector of length n is an $n \times 1$ matrix.
- A row vector of length n is an $1 \times n$ matrix.
- The (i, j) entry of a matrix A is the element $A(i, j)$ in row i and column j of A.

$$
A=\left(\begin{array}{cccc}
A(1,1) & A(1,2) & \cdots & A(1, m) \\
A(2,1) & A(2,2) & \cdots & A(2, m) \\
\vdots & & & \vdots \\
A(n, 1) & A(n, 2) & \cdots & A(n, m)
\end{array}\right)
$$

Let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}.

- The sum of $m \times n$ matrices A and B is the $m \times n$ matrix $A+B$ given by $(A+B)(i, j)=A(i, j)+B(i, j), \quad$ for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$.
- The scalar multiplication of an element $c \in \mathbb{F}$ with an $m \times n$ matrix A is the $m \times n$ matrix $c \cdot A$ given by

$$
(c \cdot A)(i, j)=c \cdot A(i, j), \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\}
$$

- The product of an $m \times n$ matrix A and an $n \times p$ matrix B is the $m \times p$ matrix $A B$ given by

$$
\begin{aligned}
(A B)(i, k) & =\sum_{j=1}^{n} A(i, j) B(j, k) \\
& =A(i, 1) B(1, k)+A(i, 2) B(2, k)+\cdots+A(i, n) B(n, k)
\end{aligned}
$$

for $i \in\{1, \ldots, m\}$ and $k \in\{1, \ldots, p\}$.
The zero matrix is the $m \times n$ matrix $0 \in M_{m \times n}(\mathbb{F})$ given by

$$
0(i, j)=0, \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\} .
$$

The negative of a matrix $A \in M_{m \times n}(\mathbb{F})$ is the matrix $-A \in M_{m \times n}(\mathbb{F})$ given by

$$
(-A)(i, j)=-A(i, j), \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\} .
$$

The following proposition says that $M_{m \times n}(\mathbb{F})$ is an \mathbb{F}-vector space.
Proposition 1.1.1. - Let $m, n \in \mathbb{Z}_{>0}$ and let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}.
(a) If $A, B, C \in M_{m \times n}(\mathbb{F})$ then $A+(B+C)=(A+B)+C$.
(b) If $A, B \in M_{m \times n}(\mathbb{F})$ then $A+B=B+A$.
(c) If $A \in M_{m \times n}(\mathbb{F})$ then $0+A=A$ and $A+0=A$.
(d) If $A \in M_{m \times n}(\mathbb{F})$ then $(-A)+A=0$ and $A+(-A)=0$.
(e) If $A \in M_{m \times n}(\mathbb{F})$ and $c_{1}, c_{2} \in \mathbb{F}$ then $c_{1} \cdot\left(c_{2} \cdot A\right)=\left(c_{1} c_{2}\right) \cdot A$.
(f) If $A \in M_{m \times n}(\mathbb{F})$ and $1 \in \mathbb{F}$ is the identity in \mathbb{F} then $1 \cdot A=A$.

The Kronecker delta is given by

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j, \\ 0, & \text { otherwise }\end{cases}
$$

The identity matrix is the $n \times n$ matrix $1 \in M_{n \times n}(\mathbb{F})$ given by

$$
1(i, j)=\delta_{i j}, \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\} .
$$

The following proposition says that $M_{n}(\mathbb{F})$ is a ring (usually noncommutative).
Proposition 1.1.2. - Let $n \in \mathbb{Z}_{>0}$ and let $M_{n}(\mathbb{F})$ be the set of $n \times n$ matrices in \mathbb{F}.
(a) If $A, B, C \in M_{n}(\mathbb{F})$ then $A+(B+C)=(A+B)+C$.
(b) If $A, B \in M_{n}(\mathbb{F})$ then $A+B=B+A$.
(c) If $A \in M_{n}(\mathbb{F})$ then $0+A=A$ and $A+0=A$.
(d) If $A \in M_{n}(\mathbb{F})$ then $(-A)+A=0$ and $A+(-A)=0$.
(e) If $A, B, C \in M_{n}(\mathbb{F})$ then $A(B C)=(A B) C$.
(f) If $A, B, C \in M_{n}(\mathbb{F})$ then $(A+B) C=A C+B C$ and $C(A+B)=C A+C B$.
(g) If $A \in M_{n}(\mathbb{F})$ then $1 A=A$ and $A 1=A$.

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{t} given by

$$
A^{t}(i, j)=A(j, i), \quad \text { for } i \in\{1, \ldots, n\} \text { and } j \in\{1, \ldots, m\} .
$$

The following proposition says that transpose is an antiautomorphism of the ring $M_{n}(\mathbb{F})$.
Proposition 1.1.3. - Let $m, n \in \mathbb{Z}_{>0}$, let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}, and let $M_{n}(\mathbb{F})$ be the set of $n \times n$ matrices in \mathbb{F}.
(a) If $A, B \in M_{m \times n}(\mathbb{F})$ then $(A+B)^{t}=A^{t}+B^{t}$,
(b) If $A \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$ then $(c \cdot A)^{t}=c \cdot A^{t}$,
(c) If $A, B \in M_{n}(\mathbb{F})$ then $(A B)^{t}=B^{t} A^{t}$.
(d) If $A \in M_{n}(\mathbb{F})$ then $\left(A^{t}\right)^{t}=A$.

1.2. Vector spaces and linear transformations

Let \mathbb{F} be a field. A \mathbb{F}-vector space is a set V with functions

$$
\begin{array}{rlc}
V \times V & \rightarrow & V \\
\left(v_{1}, v_{2}\right) & \mapsto & v_{1}+v_{2}
\end{array} \quad \text { and } \quad \begin{array}{rlll}
\mathbb{K} \times V & \rightarrow & V \\
(c, v) & \mapsto & c v
\end{array}
$$

(addition and scalar multiplication) such that
(a) If $v_{1}, v_{2}, v_{3} \in V$ then $\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{3}\right)$,
(b) There exists $0 \in V$ such that if $v \in V$ then $0+v=v$ and $v+0=v$,
(c) If $v \in V$ then there exists $-v \in V$ such that $v+(-v)=0$ and $(-v)+v=0$,
(d) If $v_{1}, v_{2} \in V$ then $v_{1}+v_{2}=v_{2}+v_{1}$,
(e) If $c \in \mathbb{F}$ and $v_{1}, v_{2} \in V$ then $c\left(v_{1}+v_{2}\right)=c v_{1}+c v_{2}$,
(f) If $c_{1}, c_{2} \in \mathbb{F}$ and $v \in V$ then $\left(c_{1}+c_{2}\right) v=c_{1} v+c_{2} v$,
(g) If $c_{1}, c_{2} \in \mathbb{F}$ and $v \in V$ then $c_{1}\left(c_{2} v\right)=\left(c_{1} c_{2}\right) v$,
(h) If $v \in V$ then $1 v=v$.

Linear transformations are for comparing vector spaces.
Let \mathbb{F} be a field and let V and W be \mathbb{F}-vector spaces. A linear transformation from V to W is a function $f: V \rightarrow W$ such that
(a) If $v_{1}, v_{2} \in V$ then $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$,
(b) If $c \in \mathbb{F}$ and $v \in V$ then $f(c v)=c f(v)$.

One vector space can be a subspace of another.
Let V be an \mathbb{F}-vector space. A subspace of V is a subset $W \subseteq V$ such that
(a) If $w_{1}, w_{2} \in W$ then $w_{1}+w_{2} \in W$,
(b) $0 \in W$,
(c) If $w \in W$ then $-w \in W$,
(d) If $w \in W$ and $c \in \mathbb{F}$ then $c w \in W$.

The tiniest vector space is the zero space.
The zero space, (0), is the set containing only 0 with the operations $0+0=0$ and $c \cdot 0$, for $c \in \mathbb{F}$.

1.3. Kernels and images

The kernel, or null space, of a linear transformation $f: V \rightarrow W$ is the set

$$
\operatorname{ker}(f)=\{v \in V \mid f(v)=0\}
$$

The image of a linear transformation $f: V \rightarrow W$ is the set

$$
\operatorname{im}(f)=\{f(v) \mid v \in V\} .
$$

Proposition 1.3.1. - Let $f: V \rightarrow W$ be a linear transformation. Then
(a) $\operatorname{ker} f$ is a subspace of V, and
(b) $\operatorname{im} f$ is a subspace of W.

Let S and T be sets and let $f: S \rightarrow T$ be a function.
The function $f: S \rightarrow T$ is injective if f satisfies:

$$
\text { if } s_{1}, s_{2} \in S \text { and } f\left(s_{1}\right)=f\left(s_{2}\right) \text { then } s_{1}=s_{2} .
$$

The function $f: S \rightarrow T$ is surjective if f satisfies:
if $t \in T$ then there exists $s \in S$ such that $f(s)=t$.
Proposition 1.3.2. - Let $f: V \rightarrow W$ be a linear transformation. Then
(a) $\operatorname{ker} f=\{0\}$ if and only if f is injective, and
(b) $\operatorname{im} f=W$ if and only if f is surjective.

The rank of a linear transformation $f: V \rightarrow W$ is the dimension of the image of f and the nullity of a linear transformation f is the dimension of the kernel of f,

$$
\operatorname{rank}(f)=\operatorname{dim}(\operatorname{im}(f)) \quad \text { and } \quad \operatorname{nullity}(f)=\operatorname{dim}(\operatorname{ker}(f)) .
$$

1.4. Bases and dimension

Let \mathbb{F} be a field and let V be a vector space over \mathbb{F}. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a subset of V.

- The span of the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\left\{c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \mid c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{F}\right\}
$$

- A linear combination of $v_{1}, v_{2}, \ldots, v_{k}$ is an element of $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$.
- The set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent if it satisfies:
if $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $c_{1} v_{1}+\cdots+c_{k} v_{k}=0 \quad$ then $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
- A basis of V is a subset $B \subseteq V$ such that
(a) $\operatorname{span}(B)=V$,
(b) B is linearly independent.
- The dimension of V is the cardinality (number of elements) of a basis of V.

Theorem 1.4.1. - (Characterization of a basis) Let V be a vector space and let B be a subset of V. The following are equivalent:
(a) B is a basis of V;
(b) B is a minimal element of $\{S \subseteq V \mid \operatorname{span}(S)=V\}$, ordered by inclusion;
(c) B is a maximal element of $\{L \subseteq V \mid L$ is linearly independent $\}$, ordered by inclusion.

Theorem 1.4.2. - (Existence of a basis) Let V be a vector space over a field \mathbb{F}. Then (a) V has a basis, and
(b) Any two bases of V have the same number of elements.

1.5. Addition, scalar multiplication and composition of linear transformations

The sum of two linear transformations $f_{1}: V \rightarrow W$ and $f_{2}: V \rightarrow W$ is the linear transformation $\left(f_{1}+f_{2}\right): V \rightarrow W$.

$$
\left(f_{1}+f_{2}\right)(v)=f_{1}(v)+f_{2}(v), \quad \text { for } v \in V
$$

Let $f: V \rightarrow W$ be a linear transformation and let $c \in \mathbb{F}$. The scalar multiplication of f by c is the linear transformation $(c f): V \rightarrow W$ given by

$$
(c f)(v)=c \cdot f(v), \quad \text { for } v \in V
$$

The composition of a linear transformation $f_{2}: V \rightarrow W$ and a linear transformation $f_{1}: W \rightarrow Z$ is the linear transformation $\left(f_{1} \circ f_{2}\right): V \rightarrow Z$ given by

$$
\left(f_{1} \circ f_{2}\right)(v)=f_{1}\left(f_{2}(v)\right), \quad \text { for } v \in V
$$

1.6. Matrices of linear transformations and change of basis matrices

Let V and W be \mathbb{F}-vector spaces. Let B be a basis of V and let C be a basis of W. Let $f: V \rightarrow W$ be a linear transformation. The matrix of $f: V \rightarrow W$ with respect to the bases B and C is the matrix

$$
f_{C B} \in M_{C \times B}(\mathbb{F}) \quad \text { given by } \quad f(b)=\sum_{c \in C} f_{C B}(c, b) c \quad \text { for } b \in B
$$

(here we view matrices in $M_{C \times B}(\mathbb{F})$ as functions $A: C \times B \rightarrow \mathbb{F}$ so that the (c, b) entry of the matrix A is the value $A(c, b))$.

Proposition 1.6.1. - Let V and W and Z be \mathbb{F}-vector spaces with bases B, C and D, respectively. Let

$$
f: V \rightarrow W, \quad g: V \rightarrow W, \quad h: W \rightarrow Z \quad \text { be linear transformations }
$$

and let $c \in \mathbb{F}$. Then

$$
(c f)_{C B}=c \cdot f_{C B}, \quad f_{C B}+g_{C B}=(f+g)_{C B} \quad \text { and } \quad(h \circ g)_{D B}=h_{D C} g_{C B}
$$

Let V be an \mathbb{F}-vector space and let B and C be bases of V. The change of basis matrix from B to C is the matrix $P_{C B} \in M_{C \times B}(\mathbb{F})$ given by

$$
\begin{equation*}
b=\sum_{c \in C} P_{C B}(c, b) c, \quad \text { for } b \in B . \tag{1.6.1}
\end{equation*}
$$

Proposition 1.6.2. - Let $g: V \rightarrow W$ and $f: V \rightarrow V$ be linear transformations. Let B_{1} and B_{2} be bases of V, \quad and let C_{1} and C_{2} be bases of W, and let $P_{B_{1} B_{2}}$ and $P_{C_{2} C_{1}}$ be the change of basis matrices defined as in (1.6.1). Then

$$
g_{C_{2} B_{2}}=P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}} \quad \text { and } \quad f_{B_{2} B_{2}}=P_{B_{1} B_{2}}^{-1} f_{B_{1} B_{1}} P_{B_{1} B_{2}}
$$

Proposition 1.6.3. - Let $P \in M_{n}(\mathbb{F})$. The matrix P is invertible if and only if the columns of P are linearly independent in \mathbb{F}^{n}.
1.6.1. Minimal and characteristic polynomials (annihilators of $\mathbb{F}[x]$-modules).

- Let $A \in M_{n}(\mathbb{F})$. Let

$$
\begin{array}{cccc}
\varphi_{A}: & \mathbb{F}[x] & \rightarrow & M_{n}(\mathbb{F}) \\
& c_{0}+c_{1} x+\cdots+c_{r} x^{r} & \mapsto & c_{0}+c_{1} A+\cdots c_{r} A^{r}
\end{array}
$$

The kernel of φ_{A} is

$$
\operatorname{ker}\left(\varphi_{A}\right)=\left\{p(x) \in \mathbb{F}[x] \mid \varphi_{A}(p(x))=0 .\right\}
$$

Proposition 1.6.4. - There exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker}\left(\varphi_{A}\right)=m(x) \mathbb{F}[x]$.

Let $A \in M_{n}(\mathbb{F})$.

- The minimal polynomial of A is the monic polynomial $m(x) \in \mathbb{F}[x]$ such that

$$
\operatorname{ker} \varphi_{A}=m(x) \mathbb{F}[x]
$$

- The matrix $x-A \in M_{n}(\mathbb{F}[x])$. The characteristic polynomial of A is $\operatorname{det}(x-A)$.

Proposition 1.6.5. - (Cayley-Hamlton theorem) Let $A \in M_{n}(\mathbb{F})$ and let $m(x)$ be the minimal polynomial of A. Then

$$
\operatorname{det}(x-A) \in m(x) \mathbb{F}[x]
$$

1.6.2. Diagonalization (simple and semisimple $\mathbb{F}[x]$-modules). - Let \mathbb{F} be a field and let $A \in M_{n}(\mathbb{F})$.

- A subspace $U \subseteq \mathbb{F}^{n}$ is A-invariant, or U is an A-submodule of \mathbb{F}^{n}, if U satisfies: if $u \in U$ then $A u \in U$.
- Let $\lambda \in \mathbb{F}$. An eigenvector of A of eigenvalue λ is $p \in \mathbb{F}^{n}$ such that $p \neq 0$ and

$$
A p=\lambda p
$$

- The matrix A is diagonalizable if there exist $P \in G L_{n}(\mathbb{F})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$ such that

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

HW: Show that p is an eigenvector of A if and only if $\mathbb{F} p$ is A-invariant.
HW: Show that p is an eigenvector of A if and only if $p \in \operatorname{ker}(A-\lambda)$.
HW: Show that if $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $P^{-1} A P=D$ then

$$
\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n} \quad \text { and } \quad \operatorname{det}(x-A)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right) .
$$

Proposition 1.6.6. - Let \mathbb{F} be a field and let $A \in M_{n}(\mathbb{F})$.
(a) If p_{1}, \ldots, p_{k} are eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and $\lambda_{1}, \ldots, \lambda_{k}$ are all distinct then p_{1}, \ldots, p_{k} are linearly independent.
(b) Let $A \in M_{n}(\mathbb{F})$. Then A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.
(c) If \mathbb{F} is algebraically closed then A has an eigenvector.

1.6.3. Some proofs. -

Proposition 1.6.7. - Let V and W and Z be \mathbb{F}-vector spaces with bases B, C and D, respectively. Let

$$
f: V \rightarrow W, \quad g: V \rightarrow W, \quad h: W \rightarrow Z \quad \text { be linear transformations }
$$

and let $c \in \mathbb{F}$. Then

$$
(c f)_{C B}=c \cdot f_{C B}, \quad f_{C B}+g_{C B}=(f+g)_{C B} \quad \text { and } \quad(h \circ g)_{D B}=h_{D C} g_{C B} .
$$

Proof. - Let $b \in B$ and $c^{\prime} \in C$. Taking the coefficient of c^{\prime} on each side of

$$
\sum_{c \in C}(\alpha f)_{C B}(c, b) c=(\alpha f)(b)=\alpha \cdot f(b)=\alpha \cdot\left(\sum_{c \in C} f_{C B}(c, b) c\right)=\sum_{c \in C} \alpha f_{C B}(c, b) c
$$

gives $(\alpha f)_{C B}\left(c^{\prime}, b\right)=\alpha \cdot f_{C B}\left(c^{\prime}, b\right)$.
So $(\alpha f)_{C B}=\alpha \cdot f_{C B}$.
Let $b \in B$ and $c^{\prime} \in C$. Taking the coefficient of c^{\prime} on each side of

$$
\begin{aligned}
\sum_{c \in C}(f+g)_{C B}(c, b) c & =(f+g)(b)=f(b)+g(b)=\sum_{c \in C}\left(f_{C B}(c, b) c+\sum_{c \in C} g_{C B}(c, b) c\right. \\
& =\sum_{c \in C}\left(f_{C B}(c, b) c+g_{C B}(c, b) c=\sum_{c \in C}\left(f_{C B}(c, b)+g_{C B}(c, b)\right) c\right.
\end{aligned}
$$

gives $\left(f_{C B}+g_{C B}\right)\left(c^{\prime}, b\right)=f_{C B}\left(c^{\prime}, b\right)+g_{C B}\left(c^{\prime}, b\right)$.
So $f_{C B}+g_{C B}=(f+g)_{C B}$.
Let $b \in B$ and $d^{\prime} \in D$. Taking the coefficient of d^{\prime} on each side of

$$
\begin{aligned}
\sum_{d \in D}(h \circ g)_{D B}(d, b) d & =(h \circ g)(b)=h(g(b))=h\left(\sum_{c \in C} g_{C B}(c, b) c\right) \\
& =\sum_{c \in C} g_{C B}(c, b) h(c)=\sum_{c \in C} \sum_{d \in D} g_{C B}(c, b) h_{D C}(d, c) d,
\end{aligned}
$$

gives $(h \circ g)_{D B}\left(d^{\prime}, b\right)=\sum_{c \in C} \sum_{d \in D} h_{D C}\left(d^{\prime} c\right) g_{C B}(c, b)=\left(h_{D C} g_{C B}\right)\left(d^{\prime}, b\right)$.
So $(h \circ g)_{D B}=\left(h_{D C} g_{C B}\right)$.
Proposition 1.6.8. - Let $g: V \rightarrow W$ and $f: V \rightarrow V$ be linear transformations. Let B_{1} and B_{2} be bases of V, \quad and let C_{1} and C_{2} be bases of W, and let $P_{B_{1} B_{2}}$ and $P_{C_{2} C_{1}}$ be the change of basis matrices defined as in (1.6.1). Then

$$
g_{C_{2} B_{2}}=P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}} \quad \text { and } \quad f_{B_{2} B_{2}}=P_{B_{1} B_{2}}^{-1} f_{B_{1} B_{1}} P_{B_{1} B_{2}} .
$$

Proof. - Let $\beta, \beta^{\prime} \in B_{2}$. Comparing coefficients of β^{\prime} on each side of

$$
\begin{aligned}
\beta & =\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) b=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) \sum_{\beta^{\prime} \in B_{2}} P_{B_{2} B_{1}}\left(\beta^{\prime}, b\right) \beta^{\prime} \\
& =\sum_{b \in B_{1}} \sum_{\beta^{\prime} \in B_{2}} P_{B_{2} B_{1}}\left(\beta^{\prime}, b\right) P_{B_{1} B_{2}}(b, \beta) \beta^{\prime}=\sum_{b \in B_{1}} \sum_{\beta^{\prime} \in B_{2}}\left(P_{B_{2} B_{1}} P_{B_{1} B_{2}}\right)\left(\beta^{\prime}, \beta\right) \beta^{\prime}
\end{aligned}
$$

gives

$$
\left(P_{B_{2} B_{1}} P_{B_{1} B_{2}}\right)\left(\beta^{\prime}, \beta\right)=\delta_{\beta^{\prime} \beta} .
$$

So $P_{B_{2} B_{1}}=P_{B_{1} B_{2}}^{-1}$.
Let $\beta \in B_{1}$ and $c \in B_{2}$. Taking the coefficient of b^{\prime} on each side of

$$
f(c)=\sum_{c^{\prime} \in B_{2}} f_{B_{2} B_{2}}\left(c^{\prime}, c\right) c^{\prime}=\sum_{b^{\prime} \in B_{1}} f_{B_{2} B_{2}}\left(c^{\prime}, c\right) P_{B_{1} B_{2}}\left(b^{\prime}, c^{\prime}\right) b^{\prime}
$$

and

$$
f(c)=f\left(\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, c) b\right)=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, c) f(b)=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, c) \sum_{b^{\prime} \in B_{1}} f_{B_{1} B_{1}}\left(b^{\prime}, b\right) b^{\prime}
$$

gives

$$
\left(P_{B_{1} B_{2}} f_{B_{2} B_{2}}\right)(\beta, b)=\left(f_{B_{1} B_{1}} P_{B_{1} B_{2}}\right)(\beta, b) .
$$

So

$$
P_{B_{1} B_{2}} f_{B_{2} B_{2}}=f_{B_{1} B_{1}} P_{B_{1} B_{2}} \quad \text { and thus } \quad f_{B_{2} B_{2}}=P_{B_{1} B_{2}}^{-1} f_{B_{1} B_{1}} P_{B_{1} B_{2}} .
$$

Let $\gamma^{\prime} \in C_{2}$ and $\beta \in B_{2}$. Taking the coefficient of γ on each side of

$$
\begin{aligned}
\sum_{\gamma \in C_{2}} g_{C_{2} B_{2}}(\gamma, \beta) \gamma & =g(\beta)=g\left(\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) b\right)=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) g(b) \\
& =\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) \sum_{c \in C_{1}} g_{C_{1} B_{1}}(c, b) c \\
& =\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) \sum_{c \in C_{1}} g_{C_{1} B_{1}}(c, b) \sum_{\gamma \in C_{2}} P_{C_{2} C_{1}}(\gamma, c) \gamma \\
& =\sum_{b \in B_{1}, c \in C_{1}, \gamma \in C_{2}} P_{C_{2} C_{1}}(\gamma, c) g_{C_{1} B_{1}}(c, b) P_{B_{1} B_{2}}(b, \beta) \gamma \\
& =\sum_{\gamma \in C_{2}}\left(P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}}\right)(\gamma, \beta) \gamma
\end{aligned}
$$

gives $g_{C_{2} B_{2}}\left(\gamma^{\prime}, \beta\right)=\left(P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}}\right)\left(\gamma^{\prime}, \beta\right)$. So $g_{C_{2} B_{2}}=P_{C_{2} C_{2}} g_{C_{1} B_{1}} P_{B_{1} B_{2}}$.
Proposition 1.6.9. - Let $P \in M_{n}(\mathbb{F})$. The matrix P is invertible if and only if the columns of P are linearly independent in \mathbb{F}^{n}.

Proof. -
\Rightarrow : Assume P is invertible. Let p_{1}, \ldots, p_{n} be the columns of P.
To show: $\left\{p_{1}, \ldots, p_{n}\right\}$ is linearly independent.
Assume $c_{1}, \ldots, c_{n} \in \mathbb{F}$ and $c_{1} p_{1}+\cdots+c_{n} p_{n}=0$.
Let $c=\left(c_{1}, \ldots, c_{n}\right)^{t} \in \mathbb{F}^{n}$.
Since $c_{1} p_{1}+\cdots+c_{n} p_{n}=0$ then $P c=0$.
So $c=P^{-1} P c=P^{-1} 0=0$.
So $c_{1}=0, \ldots, c_{n}=0$.
\Leftarrow : Assume the columns of P are linearly independent.
To show: There exists $Q \in M_{n}(\mathbb{F})$ such that $Q P=1$.
Let p_{1}, \ldots, p_{n} be the columns of P.
Since $B=\left\{p_{1}, \ldots, p_{n}\right\}$ is linearly independent and $\operatorname{dim}\left(\mathbb{F}^{n}\right)=n$ then B is a maximal linearly independent set.
Thus, by Theorem 1.4.1, B is a basis.
Let $\left.S=\left\{e_{1}, \ldots, e_{n}\right)\right\}$ where e_{i} has 1 in the i th spot and 0 elsewhere.
Then $P=P_{B S}$, the change of basis matrix from S to B.

Let $Q=P_{S B}$, the change of basis matrix from B to S.
Then $Q P=P_{S B} P_{B S}=P_{S S}=1$.
So P is invertible.
Proposition 1.6.10. - There exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker}\left(\varphi_{A}\right)=m(x) \mathbb{F}[x]$.

Proof. -
Let $r=\min \left\{\operatorname{deg}(p) \mid p \in \operatorname{ker}\left(\varphi_{A}\right)\right\}$ and let $p(x) \in \operatorname{ker}\left(\varphi_{A}\right)$ with $\operatorname{deg}(p)=r$ and let

$$
m(x)=\frac{1}{a_{r}} p(x), \quad \text { where } \quad p(x)=a_{r} x^{r}+\cdots+a_{1} x+a_{0} .
$$

To show: $\operatorname{ker}\left(\varphi_{A}\right)=m(x) \mathbb{F}[x]$.
To show: (a) $\operatorname{ker}\left(\varphi_{A}\right) \subseteq m(x) \mathbb{F}[x]$.
To show: (b) $\operatorname{ker}\left(\varphi_{A}\right) \supseteq m(x) \mathbb{F}[x]$.
(a) Assume $f \in \operatorname{ker}\left(\varphi_{A}\right)$.

Then there exist $q(x), g(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(g(x))<r$ such that

$$
f(x)=q(x) m(x)+g(x) .
$$

Since $f(x) \in \operatorname{ker}\left(\varphi_{A}\right)$ and $q(x) m(x) \in \operatorname{ker}\left(\varphi_{A}\right)$ then $g(x) \in \operatorname{ker}\left(\varphi_{A}\right)$.
Since $\operatorname{deg}(g(x))<r$ then $g(x)=0$.
So $f(x)=q(x) m(x)$.
So $f(x) \in m(x) \mathbb{F}[x]$.
(b) Let $f(x) \in m(x) \mathbb{F}[x]$.

To show: $f(x) \in \operatorname{ker}\left(\varphi_{A}\right)$.
Since $f(x) \in m(x) \mathbb{F}[x]$ there exists $q(x) \in \mathbb{F}[x]$ such that $f(x)=q(x) m(x)$.
So $f(A)=q(A) m(A)=q(A) \cdot 0=0$.
So $f(A) \in \operatorname{ker}\left(\varphi_{A}\right)$.
So $\operatorname{ker}\left(\varphi_{A}\right)=m(x) \mathbb{F}[x]$.
Proposition 1.6.11. - (Cayley-Hamlton theorem) Let $A \in M_{n}(\mathbb{F})$ and let $m(x)$ be the minimal polynomial of A. Then

$$
\operatorname{det}(x-A) \in m(x) \mathbb{F}[x] .
$$

Proof. - Let $p=\operatorname{det}(x-A)$. BY CRAMER'S RULE,

$$
(x-A) \operatorname{adj}(x-A)=\operatorname{det}(x-A) 1_{n}, \quad \text { where } 1_{n} \text { is the } n \times n \text { identity matrix. }
$$

Evaluating both sides at A gives that $p(A)=0$. So $p \in \operatorname{ker}\left(\varphi_{A}\right)$.
Proposition 1.6.12. - Let \mathbb{F} be a field and let $A \in M_{n}(\mathbb{F})$.
(a) If p_{1}, \ldots, p_{k} are eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and $\lambda_{1}, \ldots, \lambda_{k}$ are all distinct then p_{1}, \ldots, p_{k} are linearly independent.
(b) Let $A \in M_{n}(\mathbb{F})$. Then A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.
(c) If \mathbb{F} is algebraically closed then A has an eigenvector.

Proof. - (a) Assume $c_{1} p_{1}+\cdots+c_{n} p_{n}=0$.
To show: If $j \in\{1, \ldots, n\}$ then $c_{j}=0$.
Assume $j \in\{1, \ldots, n\}$.
Then

$$
\begin{aligned}
0 & =\left(A-d_{1}\right) \cdots\left(A-d_{j-1}\right)\left(A-d_{j+1}\right) \cdots\left(A-d_{n}\right)\left(c_{1} p_{1}+\cdots+c_{n} p_{n}\right) \\
& =\cdots \\
& =c_{j}\left(d_{j}-d_{1}\right) \cdots\left(d_{j}-d_{j-1}\right)\left(d_{j}-d_{j+1}\right) \cdots\left(d_{j}-d_{n}\right) p_{j}
\end{aligned}
$$

So $c_{j} p_{j}=0$. So $c_{j}=0$.
(b) Let p_{1}, \ldots, p_{n} be the columns of P. Then $A P=P D$ gives that p_{1}, \ldots, p_{n} are eigenvectors of A.

Rewriting this equation as

$$
A P=P D, \quad \text { where } \quad D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

the eigenvectors of A are the columns of P. By Proposition 1.6.3, P being invertible is equivalent to its n columns being linearly independent.
(c) Since \mathbb{F} is algebraically closed $m(x)$ factors: there exists $a_{1}, \ldots, a_{n} \in \mathbb{F}$ such that

$$
m(x)=\left(x-a_{1}\right) \cdots\left(x-a_{n}\right) .
$$

Since $\left(A-a_{2}\right) \cdots\left(A-a_{n}\right) \neq 0$ there exists $w \in V$ such that $v=\left(A-a_{2}\right) \cdots\left(A-a_{n}\right) w \neq 0$. Then $\left(A-a_{1}\right)(v)=m(A)(w)=0$. So $A(v)=a_{1} v$.

