1.7. Jordan normal form and finitely generated $\mathbb{F}[x]$ -modules

1.7.1. Minimal and characteristic polynomials (annihilators of $\mathbb{F}[x]$ -modules). — Let $A \in M_n(\mathbb{F})$. Let

 $ev_A : \qquad \mathbb{F}[x] \qquad \to \qquad M_n(\mathbb{F}) \\ c_0 + c_1 x + \dots + c_r x^r \quad \mapsto \quad c_0 + c_1 A + \dots + c_r A^r$

The kernel of ev_A is

$$\ker(\operatorname{ev}_A) = \{p(x) \in \mathbb{F}[x] \mid \operatorname{ev}_A(p(x)) = 0.\}$$

Proposition 1.7.1. — There exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\ker(\operatorname{ev}_A) = m(x)\mathbb{F}[x]$.

Let $A \in M_n(\mathbb{F})$.

• The minimal polynomial of A is the monic polynomial $m(x) \in \mathbb{F}[x]$ such that

$$\ker \operatorname{ev}_A = m_A(x)\mathbb{F}[x].$$

• The matrix $x - A \in M_n(\mathbb{F}[x])$. The characteristic polynomial of A is det(x - A).

Proposition 1.7.2. — (Cayley-Hamlton theorem) Let $A \in M_n(\mathbb{F})$ and let m(x) be the minimal polynomial of A. Then

$$\det(x - A) \in \ker(\mathrm{ev}_A).$$

HW: Show that

 $\det(x - (A_1 \oplus A_2)) = \det(x - A_1) \det(x - A_2) \quad \text{and} \quad m_{A_1 \oplus A_2}(x) = \operatorname{lcm}(m_{A_1}(x), m_{A_2}(x)).$

HW: Show that

$$det(x - (P^{-1}AP)) = det(x - A)$$
 and $m_{P^{-1}AP}(x) = m_A(x)$.

Proposition 1.7.3. — (Chinese block decomposition) Let \mathbb{F} be a field, let $n \in \mathbb{Z}_{>0}$ and let $V = \mathbb{F}^n$. Let $A \in M_n(\mathbb{F})$ and let $m_A(x)$ be the minimal polynomial of A. Assume

$$m_A(x) = p(x)q(x)$$
 with $gcd(p(x), q(x)) = 1$

Use the Euclidean algorithm for $\mathbb{F}[x]$ to construct $r(x), s(x) \in \mathbb{F}[x]$ such that

$$1 = p(x)r(x) + q(x)s(x) \quad and \ let \quad P_U = p(A)r(A) \quad and \quad P_W = q(A)s(A).$$

Then

$$P_U^2 = P_U, \quad P_W^2 = P_W, \quad P_U P_W = P_W P_U = 0, \quad and \quad P_U + P_W = 1.$$

Let

and

$$U = p(A)r(A)V$$
 and $W = q(A)s(A)V$. Then $V = U \oplus W$
both U and W are A-invariant.

Proof. — Let $P_U = p(A)r(A)$ and $P_W = q(A)s(A)$. Then $P_U + P_W = e_V \cdot (p(x)r(x) + q(x)s(x)) = e_V \cdot (1) = 1$

$$P_U + P_W = ev_A(p(x)r(x) + q(x)s(x)) = ev_A(1) = 1.$$

Let $v \in V$. Then

$$P_U P_W v = p(A)r(A)q(A)s(A)v = p(A)q(A)r(A)s(A)v = m_A(A)r(A)s(A)v = 0.$$

Using $P_U P_W = 0$, then

 $P_U v = P_U (P_U + P_W) v = P_U^2 v$ and $P_W v = P_W (P_U + P_W) v = P_W^2 v$. So $P_U^2 = P_U$ and $P_W^2 = P_W$. If $u \in U$ then there exists $v \in V$ such that $u = P_U v$. So

$$P_U u = P_U^2 v = P_U v = u$$
, and similarly if $w \in W$ then $P_W w = w$.

Assume $z \in U \cap W$. Then $z = P_U z = P_U P_W z = 0$. So $U \cap W = 0$. Assume $v \in V$. Then $v = 1 \cdot v = (P_U + P_W)v = P_U v + P_W v \in U + W$. So V = U + W. Thus $V = U \oplus W$.

Corollary 1.7.4. — (Generalized eigenspaces and simsimple+nilpotent decomposition) Let $\overline{\mathbb{F}}$ be an algebraically closed field and let $n \in \mathbb{Z}_{>0}$. Let $V = \overline{\mathbb{F}}^n$ and let $A \in M_n(\overline{\mathbb{F}})$. Let $k \in \mathbb{Z}_{>0}$ and $\lambda_1, \ldots, \lambda_k \in \mathbb{F}$ and $c_1, \ldots, c_k \in \mathbb{Z}_{>0}$ so that

$$m_A(x) = (x - \lambda_1)^{c_1} \cdots (x - \lambda_k)^c$$

is the prime factorization of the minimal polynomial of A. For $j \in \{1, ..., k\}$ define

$$W_{\lambda_i}^{\text{gen}} = \{ v \in V \mid \text{ there exists } k \in \mathbb{Z}_{>0} \text{ such that } (A - \lambda_j)^k v = 0 \}.$$

Define
$$S \in M_n(\overline{\mathbb{F}})$$
 by setting $Sv = \lambda_j v$ if $v \in V_{\lambda_j}^{\text{gen}}$, and let $N = A - S$. Then
 $V = V_{\lambda_j}^{\text{gen}} \oplus \cdots \oplus V_{\lambda_j}^{\text{gen}}$

S is semisimple, N is nilpotent,
$$SN = NS$$
 and $A = S + N$.

1.7.2. Diagonalization (simple and semisimple $\mathbb{F}[x]$ -modules). — Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$.

Let
$$V = \mathbb{F}^n$$
 and $A \in M_n(\mathbb{F})$.

• A subspace $U \subseteq \mathbb{F}^n$ is A-invariant, or U is an A-submodule of V, if U satisfies:

if
$$u \in U$$
 then $Au \in U$.

- An *eigenvector of* A is a nonzero element of a 1-dimensional A-invariant subspace of V.
- Let $\lambda \in \mathbb{F}$. An eigenvector of A of eigenvalue λ is $p \in V$ such that

$$p \neq 0$$
 and $Ap = \lambda p$.

• The matrix A is semisimple, or diagonalizable, if there exist $P \in GL_n(\mathbb{F})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ such that

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

• The matrix A is *nilpotent* if there exists $k \in \mathbb{Z}_{>0}$ such that $A^k = 0$.

HW: Show that p is an eigenvector of A if and only if $\mathbb{F}p$ is A-invariant.

HW: Show that p is an eigenvector of A if and only if $p \in \ker(A - \lambda)$.

HW: Show that if $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and $P^{-1}AP = D$ then

$$det(A) = \lambda_1 \cdots \lambda_n$$
 and $det(x - A) = (x - \lambda_1) \cdots (x - \lambda_n)$.

Proposition 1.7.5. — Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$. Let $A \in M_n(\mathbb{F})$.

(a) If p_1, \ldots, p_k are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_k$ and $\lambda_1, \ldots, \lambda_k$ are all distinct then p_1, \ldots, p_k are linearly independent.

(b) Let $\lambda \in \mathbb{F}$. Then A has an eigenvector of eigenvalue λ if and only if λ is a root of $m_A(x)$.

(c) Let $\lambda \in \mathbb{F}$. Then A has an eigenvector of eigenvalue λ if and only if λ is a root of det(x - A).

Corollary 1.7.6. — Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$. Let $A \in M_n(\mathbb{F})$. If \mathbb{F} is algebraically closed then A has an eigenvector.

HW: Let $A \in M_n(\mathbb{F})$. Show that A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.

1.7.3. Jordan normal form (indecomposable $\mathbb{F}[x]$ -modules). — Assume that \mathbb{F} is algebraically closed. Let $d \in \mathbb{Z}_{>0}$ and let $\lambda \in \mathbb{F}$. The Jordan block of size d and eigenvalue λ is

$$J_{d}^{\lambda} \in M_{d}(\mathbb{F}) \quad \text{given by} \quad J_{d}^{\lambda}(i,j) = \begin{cases} \lambda, & \text{if } i = j, \\ 1, & \text{if } j = i+1, \\ 0, & \text{otherwise.} \end{cases}$$
$$J_{d}^{\lambda} = \begin{pmatrix} \lambda & 1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ & & \lambda & 1 & 0 \\ 0 & & \lambda & 1 & 0 \\ 0 & & \ddots & & 0 & \lambda \end{pmatrix}, \quad \text{a } d \times d \text{ matrix.}$$

Theorem 1.7.7. — (Jordan normal form) Let $n \in \mathbb{Z}_{>0}$ and let $A \in M_n(\mathbb{F})$. Then there exists $P \in GL_n(\mathbb{F})$, $k \in \mathbb{Z}_{>0}$ and $\{(\lambda_1, d_1), \ldots, (\lambda_k, d_k)\} \subseteq \mathbb{F} \times \mathbb{Z}_{>0}$ such that

$$P^{-1}AP = J_{d_1}^{\lambda_1} \oplus \cdots \oplus J_{d_k}^{\lambda_k}.$$

Up to reordering, the Jordan blocks for A are unique (don't depend on the choice of P).

HW: Show that if $J = J_d^{\lambda}$ then $m_J(x) = (x - \lambda)^d$ and $det(x - J) = (x - \lambda)^d$. **HW:** (*The waterfall basis*) Show that if $J = J_d^{\lambda}$ then

$$Je_1 = \lambda e_1, \quad Je_2 = \lambda e_2 + e_1, \quad \dots, \quad Je_d = \lambda e_d + e_{d-1}, \text{ and}$$

 $(J - \lambda)e_1 = 0, \quad (J - \lambda)e_2 = e_1, \quad \dots, \quad (J - \lambda)e_d = e_{d-1}.$

HW: Let $S \in M_n(\mathbb{F})$. Show that S is semisimple if and only if all Jordan blocks for S have size 1.

HW: Let $N \in M_n(\mathbb{F})$. Show that N is nilpotent if and only if all Jordan blocks for N have eigenvalue 0.