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1.7. Jordan normal form and finitely generated F[x]-modules

1.7.1. Minimal and characteristic polynomials (annihilators of F[x]-modules).
— Let A 2 Mn(F). Let

evA : F[x] ! Mn(F)
c0 + c1x+ · · ·+ crx

r
7! c0 + c1A+ · · · crA

r

The kernel of evA is

ker(evA) = {p(x) 2 F[x] | evA(p(x)) = 0.}

Proposition 1.7.1. — There exists a unique monic polynomial m(x) 2 F[x] such that
ker(evA) = m(x)F[x].

Let A 2 Mn(F).

• The minimal polynomial of A is the monic polynomial m(x) 2 F[x] such that

ker evA = mA(x)F[x].

• The matrix x�A 2 Mn(F[x]). The characteristic polynomial of A is det(x�A).

Proposition 1.7.2. — (Cayley-Hamlton theorem) Let A 2 Mn(F) and let m(x) be the
minimal polynomial of A. Then

det(x� A) 2 ker(evA).

HW: Show that

det(x� (A1 �A2)) = det(x�A1) det(x�A2) and mA1�A2(x) = lcm(mA1(x),mA2(x)).

HW: Show that

det(x� (P�1
AP )) = det(x� A) and mP�1AP (x) = mA(x).

Proposition 1.7.3. — (Chinese block decomposition) Let F be a field, let n 2 Z>0 and
let V = F

n. Let A 2 Mn(F) and let mA(x) be the minimal polynomial of A. Assume

mA(x) = p(x)q(x) with gcd(p(x), q(x)) = 1.

Use the Euclidean algorithm for F[x] to construct r(x), s(x) 2 F[x] such that

1 = p(x)r(x) + q(x)s(x) and let PU = p(A)r(A) and PW = q(A)s(A).

Then
P

2
U
= PU , P

2
W

= PW , PUPW = PWPU = 0, and PU + PW = 1.

Let
U = p(A)r(A)V and W = q(A)s(A)V. Then V = U �W

and both U and W are A-invariant.

Proof. — Let PU = p(A)r(A) and PW = q(A)s(A). Then

PU + PW = evA(p(x)r(x) + q(x)s(x)) = evA(1) = 1.

Let v 2 V . Then

PUPWv = p(A)r(A)q(A)s(A)v = p(A)q(A)r(A)s(A)v = mA(A)r(A)s(A)v = 0.
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Using PUPW = 0, then

PUv = PU(PU + PW )v = P
2
U
v and PWv = PW (PU + PW )v = P

2
W
v.

So P
2
U
= PU and P

2
W

= PW .
If u 2 U then there exists v 2 V such that u = PUv. So

PUu = P
2
U
v = PUv = u, and similarly if w 2 W then PWw = w.

Assume z 2 U \W . Then z = PUz = PUPW z = 0. So U \W = 0.
Assume v 2 V . Then v = 1 · v = (PU + PW )v = PUv + PWv 2 U +W . So V = U +W .
Thus V = U �W .

Corollary 1.7.4. — (Generalized eigenspaces and simsimple+nilpotent decomposition)
Let F be an algebraically closed field and let n 2 Z>0. Let V = F

n

and let A 2 Mn(F).
Let k 2 Z>0 and �1, . . . ,�k 2 F and c1, . . . , ck 2 Z>0 so that

mA(x) = (x� �1)
c1 · · · (x� �k)

ck

is the prime factorization of the minimal polynomial of A. For j 2 {1, . . . , k} define

V
gen
�j

= {v 2 V | there exists k 2 Z>0 such that (A� �j)kv = 0}.

Define S 2 Mn(F) by setting Sv = �jv if v 2 V
gen
�j

, and let N = A� S. Then

V = V
gen
�1

� · · ·� V
gen
�k

S is semisimple, N is nilpotent, SN = NS and A = S +N .

1.7.2. Diagonalization (simple and semisimple F[x]-modules). — Let F be a field
and let n 2 Z>0.

Let V = F
n and A 2 Mn(F).

• A subspace U ✓ F
n is A-invariant, or U is an A-submodule of V , if U satisfies:

if u 2 U then Au 2 U .

• An eigenvector of A is a nonzero element of a 1-dimensional A-invariant subspace
of V .

• Let � 2 F. An eigenvector of A of eigenvalue � is p 2 V such that

p 6= 0 and Ap = �p.

• The matrix A is semisimple, or diagonalizable, if there exist P 2 GLn(F) and
�1, . . . ,�n 2 F such that

P
�1
AP = diag(�1, . . . ,�n).

• The matrix A is nilpotent if there exists k 2 Z>0 such that Ak = 0.

HW: Show that p is an eigenvector of A if and only if Fp is A-invariant.

HW: Show that p is an eigenvector of A if and only if p 2 ker(A� �).

HW: Show that if D = diag(�1, . . . ,�n) and P
�1
AP = D then

det(A) = �1 · · ·�n and det(x� A) = (x� �1) · · · (x� �n).

Proposition 1.7.5. — Let F be a field and let n 2 Z>0. Let A 2 Mn(F).
(a) If p1, . . . , pk are eigenvectors of A with eigenvalues �1, . . . ,�k and �1, . . . ,�k are all
distinct then p1, . . . , pk are linearly independent.
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(b) Let � 2 F. Then A has an eigenvector of eigenvalue � if and only if � is a root of
mA(x).
(c) Let � 2 F. Then A has an eigenvector of eigenvalue � if and only if � is a root of
det(x� A).

Corollary 1.7.6. — Let F be a field and let n 2 Z>0. Let A 2 Mn(F). If F is alge-
braically closed then A has an eigenvector.

HW: Let A 2 Mn(F). Show that A is diagonalizable if and only if there exist n linearly
independent eigenvectors of A.

1.7.3. Jordan normal form (indecomposable F[x]-modules). — Assume that F is
algebraically closed. Let d 2 Z>0 and let � 2 F. The Jordan block of size d and eigenvalue
� is

J
�

d
2 Md(F) given by J

�

d
(i, j) =

8
><

>:

�, if i = j,

1, if j = i+ 1,

0, otherwise.

J
�

d
=

0

BBBBBBB@

� 1 0 0 · · · 0
0 � 1 0 · · · 0
.
.
.

. . .
. . .

.

.

.

� 1 0
0 � 1

0 · · · 0 �

1

CCCCCCCA

, a d⇥ d matrix.

Theorem 1.7.7. — (Jordan normal form) Let n 2 Z>0 and let A 2 Mn(F). Then there
exists P 2 GLn(F), k 2 Z>0 and {(�1, d1), . . . , (�k, dk)} ✓ F⇥ Z>0 such that

P
�1
AP = J

�1
d1

� · · ·� J
�k
dk
.

Up to reordering, the Jordan blocks for A are unique (don’t depend on the choice of P ).

HW: Show that if J = J
�

d
then mJ(x) = (x� �)d and det(x� J) = (x� �)d.

HW: (The waterfall basis) Show that if J = J
�

d
then

Je1 = �e1, Je2 = �e2 + e1, . . . , Jed = �ed + ed�1, and

(J � �)e1 = 0, (J � �)e2 = e1, . . . , (J � �)ed = ed�1.

HW: Let S 2 Mn(F). Show that S is semisimple if and only if all Jordan blocks for S
have size 1.

HW: Let N 2 Mn(F). Show that N is nilpotent if and only if all Jordan blocks for N

have eigenvalue 0.


