1.7. Jordan normal form and finitely generated $\mathbb{F}[x]$-modules

1.7.1. Minimal and characteristic polynomials (annihilators of $\mathbb{F}[x]$-modules).

- Let $A \in M_{n}(\mathbb{F})$. Let

$$
\begin{array}{cccc}
\operatorname{ev}_{A}: & \mathbb{F}[x] & \rightarrow & M_{n}(\mathbb{F}) \\
& c_{0}+c_{1} x+\cdots+c_{r} x^{r} & \mapsto & c_{0}+c_{1} A+\cdots c_{r} A^{r}
\end{array}
$$

The kernel of ev_{A} is

$$
\operatorname{ker}\left(\operatorname{ev}_{A}\right)=\left\{p(x) \in \mathbb{F}[x] \mid \operatorname{ev}_{A}(p(x))=0 .\right\}
$$

Proposition 1.7.1. - There exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker}\left(\mathrm{ev}_{A}\right)=m(x) \mathbb{F}[x]$.

Let $A \in M_{n}(\mathbb{F})$.

- The minimal polynomial of A is the monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker~ev}_{A}=m_{A}(x) \mathbb{F}[x]$.
- The matrix $x-A \in M_{n}(\mathbb{F}[x])$. The characteristic polynomial of A is $\operatorname{det}(x-A)$.

Proposition 1.7.2. - (Cayley-Hamlton theorem) Let $A \in M_{n}(\mathbb{F})$ and let $m(x)$ be the minimal polynomial of A. Then

$$
\operatorname{det}(x-A) \in \operatorname{ker}\left(\operatorname{ev}_{A}\right)
$$

HW: Show that
$\operatorname{det}\left(x-\left(A_{1} \oplus A_{2}\right)\right)=\operatorname{det}\left(x-A_{1}\right) \operatorname{det}\left(x-A_{2}\right) \quad$ and $\quad m_{A_{1} \oplus A_{2}}(x)=\operatorname{lcm}\left(m_{A_{1}}(x), m_{A_{2}}(x)\right)$.
HW: Show that

$$
\operatorname{det}\left(x-\left(P^{-1} A P\right)\right)=\operatorname{det}(x-A) \quad \text { and } \quad m_{P^{-1} A P}(x)=m_{A}(x)
$$

Proposition 1.7.3. - (Chinese block decomposition) Let \mathbb{F} be a field, let $n \in \mathbb{Z}_{>0}$ and let $V=\mathbb{F}^{n}$. Let $A \in M_{n}(\mathbb{F})$ and let $m_{A}(x)$ be the minimal polynomial of A. Assume

$$
m_{A}(x)=p(x) q(x) \quad \text { with } \quad \operatorname{gcd}(p(x), q(x))=1
$$

Use the Euclidean algorithm for $\mathbb{F}[x]$ to construct $r(x), s(x) \in \mathbb{F}[x]$ such that

$$
1=p(x) r(x)+q(x) s(x) \quad \text { and let } \quad P_{U}=p(A) r(A) \quad \text { and } \quad P_{W}=q(A) s(A)
$$

Then

$$
P_{U}^{2}=P_{U}, \quad P_{W}^{2}=P_{W}, \quad P_{U} P_{W}=P_{W} P_{U}=0, \quad \text { and } \quad P_{U}+P_{W}=1
$$

Let

$$
U=p(A) r(A) V \quad \text { and } \quad W=q(A) s(A) V . \quad \text { Then } \quad V=U \oplus W
$$

and both U and W are A-invariant.
Proof. - Let $P_{U}=p(A) r(A)$ and $P_{W}=q(A) s(A)$. Then

$$
P_{U}+P_{W}=\mathrm{ev}_{A}(p(x) r(x)+q(x) s(x))=\mathrm{ev}_{A}(1)=1
$$

Let $v \in V$. Then

$$
P_{U} P_{W} v=p(A) r(A) q(A) s(A) v=p(A) q(A) r(A) s(A) v=m_{A}(A) r(A) s(A) v=0
$$

Using $P_{U} P_{W}=0$, then

$$
P_{U} v=P_{U}\left(P_{U}+P_{W}\right) v=P_{U}^{2} v \quad \text { and } \quad P_{W} v=P_{W}\left(P_{U}+P_{W}\right) v=P_{W}^{2} v .
$$

So $P_{U}^{2}=P_{U}$ and $P_{W}^{2}=P_{W}$.
If $u \in U$ then there exists $v \in V$ such that $u=P_{U} v$. So

$$
P_{U} u=P_{U}^{2} v=P_{U} v=u, \quad \text { and similarly } \quad \text { if } w \in W \text { then } P_{W} w=w .
$$

Assume $z \in U \cap W$. Then $z=P_{U} z=P_{U} P_{W} z=0$. So $U \cap W=0$.
Assume $v \in V$. Then $v=1 \cdot v=\left(P_{U}+P_{W}\right) v=P_{U} v+P_{W} v \in U+W$. So $V=U+W$. Thus $V=U \oplus W$.

Corollary 1.7.4. - (Generalized eigenspaces and simsimple + nilpotent decomposition) Let $\overline{\mathbb{F}}$ be an algebraically closed field and let $n \in \mathbb{Z}_{>0}$. Let $V=\overline{\mathbb{F}}^{n}$ and let $A \in M_{n}(\overline{\mathbb{F}})$. Let $k \in \mathbb{Z}_{>0}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ and $c_{1}, \ldots, c_{k} \in \mathbb{Z}_{>0}$ so that

$$
m_{A}(x)=\left(x-\lambda_{1}\right)^{c_{1}} \cdots\left(x-\lambda_{k}\right)^{c_{k}}
$$

is the prime factorization of the minimal polynomial of A. For $j \in\{1, \ldots, k\}$ define

$$
V_{\lambda_{j}}^{\text {gen }}=\left\{v \in V \mid \text { there exists } k \in \mathbb{Z}_{>0} \text { such that }\left(A-\lambda_{j}\right)^{k} v=0\right\} .
$$

Define $S \in M_{n}(\overline{\mathbb{F}})$ by setting $S v=\lambda_{j} v$ if $v \in V_{\lambda_{j}}^{\text {gen }}, \quad$ and let $N=A-S$. Then

$$
V=V_{\lambda_{1}}^{\mathrm{gen}} \oplus \cdots \oplus V_{\lambda_{k}}^{\mathrm{gen}}
$$

S is semisimple, $\quad N$ is nilpotent, $\quad S N=N S$ and $A=S+N$.
1.7.2. Diagonalization (simple and semisimple $\mathbb{F}[x]$-modules). - Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$.

$$
\text { Let } \quad V=\mathbb{F}^{n} \quad \text { and } \quad A \in M_{n}(\mathbb{F}) \text {. }
$$

- A subspace $U \subseteq \mathbb{F}^{n}$ is A-invariant, or U is an A-submodule of V, if U satisfies:

$$
\text { if } u \in U \text { then } A u \in U \text {. }
$$

- An eigenvector of A is a nonzero element of a 1 -dimensional A-invariant subspace of V.
- Let $\lambda \in \mathbb{F}$. An eigenvector of A of eigenvalue λ is $p \in V$ such that

$$
p \neq 0 \quad \text { and } \quad A p=\lambda p .
$$

- The matrix A is semisimple, or diagonalizable, if there exist $P \in G L_{n}(\mathbb{F})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$ such that

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

- The matrix A is nilpotent if there exists $k \in \mathbb{Z}_{>0}$ such that $A^{k}=0$.

HW: Show that p is an eigenvector of A if and only if $\mathbb{F} p$ is A-invariant.
HW: Show that p is an eigenvector of A if and only if $p \in \operatorname{ker}(A-\lambda)$.
HW: Show that if $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $P^{-1} A P=D$ then

$$
\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n} \quad \text { and } \quad \operatorname{det}(x-A)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right) .
$$

Proposition 1.7.5. - Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$. Let $A \in M_{n}(\mathbb{F})$.
(a) If p_{1}, \ldots, p_{k} are eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and $\lambda_{1}, \ldots, \lambda_{k}$ are all distinct then p_{1}, \ldots, p_{k} are linearly independent.
(b) Let $\lambda \in \mathbb{F}$. Then A has an eigenvector of eigenvalue λ if and only if λ is a root of $m_{A}(x)$.
(c) Let $\lambda \in \mathbb{F}$. Then A has an eigenvector of eigenvalue λ if and only if λ is a root of $\operatorname{det}(x-A)$.

Corollary 1.7.6. - Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$. Let $A \in M_{n}(\mathbb{F})$. If \mathbb{F} is algebraically closed then A has an eigenvector.

HW: Let $A \in M_{n}(\mathbb{F})$. Show that A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.
1.7.3. Jordan normal form (indecomposable $\mathbb{F}[x]$-modules). - Assume that \mathbb{F} is algebraically closed. Let $d \in \mathbb{Z}_{>0}$ and let $\lambda \in \mathbb{F}$. The Jordan block of size d and eigenvalue λ is

$$
\begin{gathered}
J_{d}^{\lambda} \in M_{d}(\mathbb{F}) \quad \text { given by } \quad J_{d}^{\lambda}(i, j)= \begin{cases}\lambda, & \text { if } i=j, \\
1, & \text { if } j=i+1, \\
0, & \text { otherwise. }\end{cases} \\
J_{d}^{\lambda}=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \cdots & 0 \\
0 & \lambda & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & & \vdots \\
& & \lambda & 1 & 0 \\
0 & \cdots & & 0 & \lambda & 1 \\
0 & \cdots & \text { a } d \times d \text { matrix. }
\end{array}\right.
\end{gathered}
$$

Theorem 1.7.7. - (Jordan normal form) Let $n \in \mathbb{Z}_{>0}$ and let $A \in M_{n}(\mathbb{F})$. Then there exists $P \in G L_{n}(\mathbb{F}), k \in \mathbb{Z}_{>0}$ and $\left\{\left(\lambda_{1}, d_{1}\right), \ldots,\left(\lambda_{k}, d_{k}\right)\right\} \subseteq \mathbb{F} \times \mathbb{Z}_{>0}$ such that

$$
P^{-1} A P=J_{d_{1}}^{\lambda_{1}} \oplus \cdots \oplus J_{d_{k}}^{\lambda_{k}} .
$$

Up to reordering, the Jordan blocks for A are unique (don't depend on the choice of P).
HW: Show that if $J=J_{d}^{\lambda}$ then $m_{J}(x)=(x-\lambda)^{d}$ and $\operatorname{det}(x-J)=(x-\lambda)^{d}$.
HW: (The waterfall basis) Show that if $J=J_{d}^{\lambda}$ then

$$
\begin{gathered}
J e_{1}=\lambda e_{1}, \quad J e_{2}=\lambda e_{2}+e_{1}, \quad \ldots, \quad J e_{d}=\lambda e_{d}+e_{d-1}, \quad \text { and } \\
(J-\lambda) e_{1}=0, \quad(J-\lambda) e_{2}=e_{1}, \quad \ldots, \quad(J-\lambda) e_{d}=e_{d-1} .
\end{gathered}
$$

HW: Let $S \in M_{n}(\mathbb{F})$. Show that S is semisimple if and only if all Jordan blocks for S have size 1.
HW: Let $N \in M_{n}(\mathbb{F})$. Show that N is nilpotent if and only if all Jordan blocks for N have eigenvalue 0 .

